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SUMMARY

 

Evolvability is a function of the way genetic
variation interacts with the mechanisms that produce the
phenotype. We explore an explicitly mechanistic way of
studying the evolvability of phenotypes that are produced by
a relatively simple genetic mechanism, the mitogen-activated
protein kinase (MAPK) cascade. We developed a quantita-
tive model of MAPK activation that can be used to study the
effects of genetic variation on the various components of this
signaling cascade. We show how some standard tools of ap-
plied mathematics, such as steady-state formulations and
nondimensionalization, can be used to elucidate the relative
importance of variation in each gene of this mechanism. We
also give insights into non-intuitive patterns of dependence

and trade-off among the genes. The mechanism produces
several different phenotypes (ultrasensitivity to stimulation,
switch-like behavior, amount of MAPK-PP delivered, persis-
tence of MAPK-PP activity), each of which is sensitive to dif-
ferent (but partially overlapping) combinations of genes. We
show that the mechanism imposes clear limitations on the
evolvability of each of the different phenotypes of the path-
way, even in the presence of genetic variation in the compo-
nents of the mechanism. This approach to the study of
evolvability is generally applicable and complements the tra-
ditional approach through statistical genetics by providing a
mechanistic understanding of the genetic interactions that
produce the phenotype.

 

INTRODUCTION

 

The term evolvability has acquired several meanings. The
original usage in statistical genetics refers to the ability of a
population to respond to selection (Roff 1997; Lynch and
Walsh 1998). It is equivalent to the heritability of a trait in
the direction of selection. The term evolvability has also
been used to refer to the genome’s ability to produce adap-
tive variants (Wagner and Altenberg 1996), an organism’s
capacity to generate heritable phenotypic variation (Kirsch-
ner and Gerhart 1997), and the capacity of a lineage to
evolve (Kirschner and Gerhart 1998). The interest in evolv-
ability in evolutionary developmental biology emerges from
an earlier preoccupation with developmental constraints and
dissatisfaction with the fact that this negative concept did not
easily lend itself to analysis. The various definitions of
evolvability attempt to capture two quite different concepts:
(a) the availability of the appropriate genetic variation so that
there can be an evolutionary response to selection, and (b)
the ability of a developmental–genetic mechanism to gener-
ate phenotypic variation that is potentially adaptive. The first
defines the short-term evolvability of a system based on cur-
rent genetic variation. This kind of evolvability cannot be
projected far into the future because the heritability of a trait
changes when gene frequencies change after selection (Fal-

coner and Mackay 1996). The second is 

 

evolvability in
principle

 

. It asks whether the developmental mechanism is
in principle able to produce a particular phenotype, given
the appropriate genetic variation, but does not ask whether
the appropriate genetic variation is currently available. It is
the latter type of evolvability we are concerned with here.

To examine the range of phenotypes a given developmen-
tal mechanism can produce, it is necessary to have an accu-
rate description of the mechanism that can be translated into
a mathematical model. The model can include roles for the
effects of genetic, structural, and environmental factors and
can be used to examine how variation in one or more of these
factors affects the behavior of the mechanism and the result-
ant phenotype. The effects of genetic variation, and the re-
sults of selection on that variation, can then be simulated.
Mitogen-activated protein kinase (MAPK) signaling is such
a mechanism; it is a well-studied and widespread cellular
signal transduction mechanism that plays a critical role in the
regulation of a host of developmental processes. We there-
fore use the MAPK cascade as an exemplar to illustrate how
knowledge of the developmental or genetic mechanism that
underlies a particular phenotype can be used to study evolv-
ability in a quantitative manner. In doing so we explore sev-
eral approaches that allow us to focus on different aspects of
the phenotype and its underlying genetic mechanism.
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MAPK CASCADE

 

MAPK cascades constitute one of a handful of signal trans-
duction mechanisms that mediate the transmission of signals
from the cell surface to the cytoplasm and nucleus. The
MAPK cascade is a highly conserved signaling pathway and
has been found in all major groups of eukaryotes. The cascade
can be activated by growth factors, differentiation factors, or
stress. The downstream members of the cascade can be in-
volved in activating a variety of cytoplasmic regulatory pro-
teins, cytoskeletal elements, or nuclear transcription factors.
The pathway has a broad array of functions that range from
the control of cell proliferation to cell differentiation, cyto-
skeletal rearrangement, and apoptosis in response to signals
received from outside.

MAPK cascades typically have three members (Fig. 1).
The terminal member of the cascade is the MAPK proper
(e.g., ERK, JNK, p38, p42), which is activated by a MAPK
kinase (MAPKK; e.g. MEK, MKK), which in turn is acti-
vated by a MAPKK kinase (MAPKKK; e.g. Raf, Mos). Ac-
tivation of MAPK and MAPKK consists of a double phos-
phorylation at highly conserved phosphorylation sites
(Huang and Ferrell 1996). The phosphorylated kinases are
inactivated by specific phosphatases that remove one or both
phosphates. Removal of one phosphate can completely or
partially inactivate a doubly phosphorylated molecule. It
should be noted that MAPK, MAPKK, and MAPKKK are
used here as generic terms and do not refer to specific mole-
cules. A wide range of species- and cell-specific gene prod-
ucts, with interesting evolutionary relationships to each
other, serve these functions. For the purposes of this article
we refer to the members of the cascade by their generic
names only. For examples of the diversity of gene products
that serve these functions, the reader is referred to the re-
views by Herskowitz (1995), Robinson and Cobb (1997),
Garrington and Johnson (1999), and Keyse (2000).

The MAPK cascade is activated by the binding of a ligand
(a growth factor, for instance) to a cell surface receptor tyro-
sine kinase. Ligand binding to the receptor leads to phos-
phorylation of a protein complex associated with the recep-
tor on the cytoplasmic side of the cell membrane, which in
turn leads to the activation of the Ras protein (by binding to
GTP), which then activates MAPKKK (often a member of
the Raf gene family). The receptor–ligand complex then be-
comes internalized into vesicles where it may continue to be
active or may be subject to degradation and recycling (for a
theoretical study of the functional roles of receptor internal-
ization, see Haugh and Lauffenburger 1998).

Depending on the system, two or three members of the
cascade are attached to a scaffolding protein. This scaffold-
ing ensures that successive members of the cascade are phys-
ically adjacent to each other. The functional reason for this
is that a cell can contain many different MAPK pathways

that are used to transduce different signals and produce dif-
ferent results (Schwartz and Baron 1999). To prevent cross-
talk between these pathways, that is, to prevent a kinase from
one pathway from activating a member of a different path-
way, members of a particular pathway are held in physical
proximity to each other by specific scaffolding proteins
(Garrington and Johnson 1999). The scaffolding provides an
interesting structural constraint, in that it restricts the number
of molecules that can interact at any one time. Molecules that
are attached to a scaffold presumably are active at equimolar
concentrations.

The terminal member of the cascade (a MAPK such as
ERK) is typically free to move through the cytoplasm, and a
portion of the activated molecules may translocate to the nu-
cleus where they regulate gene transcription. Whether or not
the MAPK actually translocates to the nucleus depends on
how long the cascade is activated. In the mammalian PC12
cell line, it has been shown that stimulation by nerve growth
factor induces a brief activation of the MAPK pathway and
results in cell differentiation, whereas stimulation by epider-
mal growth factor causes a much more prolonged activation
of the pathway and results in stimulation of the cell cycle
(Marshall 1995). It appears that prolonged activation of the
pathway is a requirement for MAPK translocation to the nu-
cleus (Marshall 1995; Brondello et al. 1997). This sensitivity
to temporal regulation implies that the duration of activity of
a cascade upon stimulation must be regulated. It has been
suggested that this regulation may occur by down-regulation
or degradation of the cell surface receptor soon after activa-
tion (Marshall 1995) or by negative feedback from a MAPK
phosphatase, whose expression is stimulated by MAPK
(Brondello et al. 1997; Keyse 2000; Asthagiri and Lauffen-
burger 2001).

 

MATERIALS AND METHODS

 

Simulation model

 

Our simulation model for a generic MAPK signaling cascade is de-
rived from that of Huang and Ferrell (1996). Our simulation con-
sists of three parts whose properties can be studied independently
or together: (a) activation and inactivation of the cell surface recep-
tor, (b) the phosphorylation cascade, and (c) negative feedback by
the last member of the cascade. Receptor synthesis, activation, and
inactivation are summarized as follows:

d

 

R

 

/dt 

 

�

 

 k

 

1

 

if 

 

R

 

 

 

�

 

 1 (1)
d

 

R

 

/dt 

 

�

 

 0 if 

 

R

 

 

 

�

 

 1

d

 

RL

 

/dt 

 

�

 

 k

 

2

 

·

 

L

 

·(

 

R

 

-

 

RL

 

) – k

 

3

 

·

 

RL

 

(2)

where 
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 is the receptor, 

 

L

 

 is a ligand (a growth factor, for instance),

 

RL

 

 is the activated growth factor–receptor complex, and k is a rate
constant corresponding to labeled arrows in Figure 1. Equation (1)
describes up-regulation of the receptor to a level normalized to 1.
Equation (2) describes changes in the level of active ligand–receptor
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complex (

 

RL

 

) as a fraction of the total amount of receptor. We as-
sume that the total level of receptor begins to decline exponentially
after initial stimulation by the ligand, and this down-regulation is
given by d
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/dt 
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], using the same rate constant as inactiva-
tion of the ligand–receptor complex.

The phosphorylation and dephosphorylation reactions of the
MAPK cascade are represented by Eqs. (3)–(5), where we follow
the active (phosphorylated) kinase as a fraction of the total kinase
present. To simplify notation we omit the MAP prefix (so MAPKKK
becomes KKK, etc.), and we indicate single and double phosphory-
lations by P and PP, respectively. We also assume that the rate con-
stants for the first and second phosphorylation have the same value
and are thus represented by the same parameter (Fig. 1).
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Here 

 

N

 

 indicates the total amount of each kinase in the cascade.
When 

 

N

 

 is set to unity, the values of the kinases represent the frac-
tion of the total amount of kinase that is in the single- or double-

phosphorylated form (the effect of different assumptions about the
values of 

 

N

 

 is explored below [cf. Figs. 10 and 11]). f is the rate con-
stant for the forward reaction (phosphorylation), and r is the rate
constant for the reverse reaction (dephosphorylation). We assume
that the source of phosphates is saturating, so all rate constants are
in units of t

 

-1

 

. Equation (3) represents the activation of MAPKKK
by the activated receptor/Ras component of the cascade. Equations
(4) and (5) represent the double phosphorylation of the MAPKK
and MAPK, respectively, with Eqs. (4.1) and (5.1) representing the
first phosphorylation and Eqs. (4.2) and (5.2) the second phosphor-
ylation. We note that this reaction scheme differs from that used by
Huang and Ferrell (1996) in that we explicitly model mass action
kinetics rather than Michaelis-Menten kinetics. This approach al-
lows us to investigate the sensitivity of the system to each of the ki-
netic constants and to the total amount of each kinase independently
rather than via their effect on composite parameters such as V
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and the Michaelis constant. Unless noted otherwise, the parameter
values used in all simulations shown below are as follows: f
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Feedback inhibition of MAPK occurs when active MAPK in-

duces or enhances the synthesis and activation of a MAPK phos-
phatase, which dephosphorylates and thus inactivates MAPK.
Feedback inhibition by the terminal product of the cascade (a
MAPK-PP) is believed to occur at the first and last steps in the cas-
cade (Fig. 1). This inhibition is simulated by using the MAPK-PP to
enhance the dephosphorylation (phosphatase) rate in Eqs. (3), (5.1),

Fig. 1. Structure of the MAPK cascade. We assume that the active receptor–ligand complex (RLactive) controls the phosphorylation of
MAPKKK directly. The MAPKK and MAPK levels of the cascade are activated by double phosphorylation. Dotted lines indicate neg-
ative feedback by the activated MAPK. The rate constants for the reactions are designated as fn for the forward (phosphorylation) reac-
tions and rn for the reverse (dephosphorylation) reactions.
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and (5.2) above, giving the following set of equations that model
the MAPK cascade with feedback:
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The MAPK cascade can also be subject to positive feedback from
MAPK to MAPKKK in some cells, and this feedback mechanism
can result in a bistable switch with sharp transitions between the ac-
tive and inactive forms of MAPK and hysteresis (Ferrell and Xiong
2001). The consequences of this form of positive feedback on
evolvability is not examined here.

 

RESULTS AND DISCUSSION

Kinetic behavior of the simulation model

 

We first examined the kinetic behavior of the basic model,
that is, in the absence of up- and down-regulation of the re-
ceptor (setting 

 

R

 

 in Eq. (2) to 1) and without the negative
feedback. The activation level of each member of the cas-
cade in response to a range of stimulus strengths is shown in
Figure 2. This figure illustrates an important property of the
cascade, 

 

ultrasensitivity

 

 to stimulation, which was eluci-
dated by Huang and Ferrell (1996; see also Ferrell 1996,
1997, 1999; Hoek and Kholodenko 1997). Ultrasensitivity
describes the increasing steepness of the sigmoid “activity”
curve for each successive member of the cascade. Huang and

Fig. 2. Response of the model to variation in stimulation by
ligand (L). Progressively lower members of the cascade exhibit in-
creasing sensitivity and an increasingly steep sigmoidal response.
The terminal member of the cascade (MAPK-PP) is fully satu-
rated at L � 0.1 and half-saturated at L � 0.008, using the param-
eter values shown in Materials and Methods and in the legend to
Fig. 3.

Fig. 3. The effect of various components of the model on the time
evolution of the MAPK-PP level. (A) Profile in the absence of
feedback and down-regulation of stimulation by ligand; (B) pro-
file with feedback only; (C) profile with down-regulation of ligand
stimulation only; (D) profile with both feedback and ligand down-
regulation. All plots use the following parameter values: f1 � f2 �
f3 � 1150, r1 � r2 � r3 � 150, N1 � N2 � N3 � 1.
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Ferrell (1996) showed that the increasing steepness of the
sigmoid response is a consequence of the double phosphor-
ylation steps. For the parameter values used here, the re-
sponse to ligand (L) is at half saturation at L � 0.01 and is
saturating at L � 0.05. As noted above, the effect of double
phosphorylation of the middle and terminal members of the
cascade is to increase the steepness of the switch (Huang and
Ferrell 1996). The same effect could be obtained by adding
additional steps to the cascade, though this solution does not
appear to have evolved in nature.

The concentration profile of active MAPK that develops
upon exposure to a ligand is shown in Figure 3A. Upon in-
troduction of ligand the level of active MAPK (MAPK-PP)
rises rapidly and then stabilizes at a steady state whose value
is determined by the relative values of the phosphorylation
and dephosphorylation rates. It is clear that Figure 3A does
not reproduce the detailed temporal pattern of activation ob-
served experimentally (Fig. 4). In CCL39 fibroblast cells,
MAPK activity rises to a peak upon stimulation and then de-
clines, first rapidly and then more slowly with an approximate
half-life of 45 minutes (Brondello et al. 1997). Changing the
relative values of the phosphorylation and dephosphorylation
rates, in any combination, changes the level of the steady
state but has no effect on the overall shape of the time profile,
that is, it does not produce an initial peak of phosphorylation
of MAPK (Fig. 4). The peak-like initial overshoot is readily
simulated by the introduction of the negative feedback loop
at the end of the cascade (Fig. 3B).

After the initial overshoot, the level of active MAPK set-
tles down to a constant steady state, where it remains indefi-
nitely. In life, however, the level of active MAPK gradually
declines (Fig. 4). We found two ways to simulate this de-
cline. The most straightforward way is by introducing down-

regulation of the receptor complex (Fig. 3C). The rate of
receptor complex deactivation (k3 in Eq. (2)) determines the
apparent half-life of active MAPK. We have already noted
that different persistence times of MAPK activity can pro-
duce different physiological effects in the cell. As can be
seen from Figure 3, down-regulation of the receptor, by it-
self, does not reproduce the initial sharp overshoot of MAPK
activity. Hence, to produce the experimentally observed pro-
files of MAPK activity upon stimulation, it is necessary to have
both receptor inactivation and terminal negative feedback (Fig.
3D). The second way of producing at least the appearance of a
gradual decline in MAPK activity is by reducing the feedback
inhibition, so that the rate of dephosphorylation of MAPK is,
for a time at least, substantially slower than its rate of phos-

Fig. 4. Experimentally obtained profile of p44MAPK activity (phos-
phorylation) in CCL39 cells after stimulation by serum. Redrawn
from Brondello et al. (1997).

Fig. 5. Variation in the persistence time of MAPK-PP is affected
by the rate of down-regulation of the growth factor–receptor com-
plex (A) and by the rate of phosphatase activity (B). Graphs rep-
resent the time evolution of MAPK-PP levels after stimulation by
ligand at time � 0. Numbers on the right side indicate the factor
by which the relevant rate is reduced to obtain the profile indi-
cated, where 1.00 represents the value used to obtain the dynam-
ics in Figure 3D. Reducing either the rate of down-regulation of
the receptor or the phosphatase activity increases the persistence
time of active MAPK-PP.
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phorylation. The results of such a simulation are shown in Fig-
ure 5. Changing the rate of receptor down-regulation (Fig. 5A)
decreases the rate at which the level of MAPK-PP declines,
whereas changing phosphatase activity (Fig. 5B) mainly el-
evates the peak level of MAPK-PP.

Nondimensional parameters
The parameter values used to obtain the results in Figure 3 are
shown in the legend. There are almost certainly an infinite num-
ber of combinations of parameter values that could produce the
same results. For instance, the value of an equilibrium constant
is the ratio of the values of the forward and backward rate con-
stants, and the effect of increasing the value of the forward rate
constant by an arbitrary factor can be offset by increasing the
value of the backward rate constant by a similar factor. In sys-
tems of even moderate complexity, it is typically not possible to
deduce the patterns of trade-off among parameters by inspec-
tion of the equations. It is possible, however, to express this sys-
tem in terms of nondimensional parameters. Nondimensional-
ization has several advantages: It almost always reduces the
number of parameters, and it clarifies the trade-off relationships
among the original parameters (Edelstein-Keshet 1988).

We calculated the following dimensionless form of the
MAPK cascade:

dKKKP/dt � A1 RL (1 – KKKP) – KKKP KPP (9)

dKKP/dt � A2 KKKP (1 – 2 KKP – KKPP)
– A3 (KKP – KKPP) (10.1)

dKKPP/dt � A2 KKKP KKP – A3 KKPP (10.2)

dKP/dt � A4 KKPP (1 – 2 KP – A5 KPP)
� A6 KPP (A5 KPP – KP) (11.1)

dKPP/dt � A4 KKPP KP/A5 – A6 KPP2 (11.2)

where A1–6 are the new dimensionless parameters, whose
definitions are as follows:

A1 � f1/r1 A2 � f2·N1/k3 A3 � r2/k3

A4 � f3·N2/k3 A5 � k3/r1·N3 A6 � r3/r1

where k3 is the decay rate of the receptor–ligand complex
(RL) from Eq. (2). In this case the nondimensionalization re-
duces the number of parameters only slightly (from 10 to 6).
The dimensionless parameters are made up of combinations
of the original parameters, and the trade-offs among them
can now be deduced by inspection (keeping in mind that A4,
A5, and A6 interact as shown in Eq. (11)). Thus, if N1 is sub-
stantially smaller than N2 and N3, this would require that f2 be
substantially larger than f1 and f3, all other things being equal
to obtain the behavior shown in Figure 3. The constraints
given by the definitions of A1–6 and the requirement to pro-
duce the dynamics of Figure 4 suggest that once the values
of some of the parameters are known, others can be predicted
to fall within rather narrow limits. Nondimensionalization

thus produces a unit-less system and a somewhat simplified
notation that can facilitate certain types of analysis.

Steady-state behavior
The ultimate role of the MAPK cascade is to deliver a quantity
of activated MAPK to target sites in the cell. The amount of ac-
tive MAPK varies over time in a pattern that is determined by
the parameters of the mechanism. This dynamic temporal vari-
ation makes it difficult to describe and evaluate the relative sig-
nificance of the various parameters. The effect of parameter
variation can, however, be readily quantified by studying the
steady-state behavior of the system. Eliminating receptor
down-regulation and feedback allows us to study the time-
independent steady state of the cascade, which is a measure of
the amount of active (doubly phosphorylated) MAPK that is
deliverable. At steady state, the derivatives in Eqs. (3) through
(5) are 0, and the system of four equations can be solved for
[MAPK-PP] as a function of the eight reaction constants and
the relative number of molecules at each step in the cascade.
After some algebra, the solution can be expressed as follows:

MAPK-PPss � L4 N3/  ((L f1 � r1)
2 

� L f1 (L f1 � r1) f2 r2 N1 � L2   )2

� L2   f3 r3  N2 ((L f1 � r1)
2  

� L f1 (L f1 � r1) f2 r2 N1 � L2   )
� L4     (12)

Here MAPK-PP refers to the level of MAPK-PP as a fraction
of the total MAPK available, L refers to the active receptor–
ligand complex (RL elsewhere), and other parameters are as
defined before. Equations (3)–(5) can also be expressed in
nondimensional form as follows:

dKKKP/dt � RL – RL KKKP – B1 KKKP
dKKP/dt � B2 KKKP(1-2 KKP- KKPP)

– B3 (KKP – KKPP)
dKKPP/dt � B2 KKKP KKP-B3 KKPP

dKP/dt � B4 KKPP(1-2 KP)
� B5 KPP (B6-B4 KKPP) – B6 KP

dKPP/dt � B4 KKPP KP/B5-B6 KPP

using the following nondimensional parameters:

B1 � r1/f1 B2�N1 f2/f1 B3 � r2/f1

B4 � N2 f3/f1 B5� f3 /N3 r3 B6 � r3/f1

This nondimensionalization requires a different choice of
nondimensional parameters because the equations do not in-
clude decay of the receptor complex. The nondimensional
steady state is found to be

MAPK-PPss � (  L4)/(  � 2  L (B2 � 2 B3) 
�  B5 L

2 (6 B2 B3 B5 � 6  B5

�  (B4 � 3 B5)) � B1 B3 B5 L
3 (B2 � 2 B3)

(  B4 � 2 B5 (  � B2 B3 � ))
� (   �  B4 B5 (  � B2 B3 � )
� (  � B2 B3 � )2 ) L4) (13)
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Although it is possible to use Eq. (13) to study the steady-
state behavior of the nondimensional system, for the present
purposes we only examine the fully dimensional system rep-
resented by Eq. (12), because we are ultimately interested in
the relative effects of variation of individual genes. How
variation in one gene might interact with that of other genes
can be deduced from the structure of the nondimensional
system. The steady-state Eq. (12) is sufficiently complicated
that the effect of parameter variation cannot be easily de-
duced by inspection. A graphical analysis (see below) pro-
vides some of the required insights. Before proceeding with
the analysis of the steady state, it is important to have clarity
about what is meant by genotype and phenotype in this system.

What is the genotype?
The genetically determined properties of this system are the pa-
rameters of the simulation model. Mutations in the regulatory
region of the MAPK genes will affect their level of expression,
and this is modeled by variation in N. Mutations in coding re-
gions will affect the kinase and phosphatase rate constants, the
k of the model. Alternative alleles can thus be represented by al-
ternative values of these parameters. We have already seen
some ways in which parameter variation affects the behavior of
this system. A systematic exploration of the sensitivity of this
system to parameter variation should give us some insight into
the sensitivity of this cascade to mutations and genetic variation
in its various components. Evolvability is in effect a measure of
the association between genetic variation and phenotypic varia-
tion. Mutations (or allelic variation) that have no effect on the
phenotype will be selectively neutral and thus will not affect
evolvability of the system. Thus, we would like to understand
how sensitive the phenotype is to all the possible kinds of ge-
netic variation in the underlying mechanism (Nijhout 2002).

What is the phenotype?
Evolvability is defined with reference to a specific pheno-
type, so it is necessary to establish what the relevant pheno-
type is, whose variation and evolvability we wish to examine.
Equations (12) and (13) were derived with the assumption that
variation in the total deliverable amount of active MAPK is
the phenotype of interest. Other variable phenotypes of the
MAPK cascade are sensitivity to stimulation, amount of ampli-
fication of the signal, persistence of the MAPK signal, and ro-
bustness to parameter variation. All these phenotypes can pre-
sumably be under independent selection, and they should be
able to evolve if the appropriate genetic variation is available.
We first consider the evolvability of the phenotype described
by Eq. (12) before addressing the other possible phenotypes.

Evolvability of MAPK-PP delivery
(the MAPK-PP phenotype)
The function of the MAPK cascade is to deliver activated
MAPK to the nucleus upon receiving an appropriate signal

at the cell surface. The phenotypes of interest here are the
total amount of MAPK-PP delivered and the amount of
MAPK-PP delivered relative to the strength of the signal re-
ceived at the cell surface. The steady-state Eq. (12) shows
that the parameters interact with each other in relatively
complicated ways, which makes it difficult to get a sense of
the behavior of this system from simple univariate plots. Ide-
ally one would like to explore the full 10-dimensional pa-
rameter space at once, but such a space cannot be depicted.
Instead, we examine the steady-state properties of this sys-
tem by means of selected bivariate plots. Although the di-
mensionality of such plots is still low relative to the dimen-
sionality of the whole system, they nevertheless give an
immediate indication of how genes interact in controlling the
value of the phenotype. We begin by setting the parameters
to values that produce the kinetics shown in Figure 3. This
provides a baseline from which we can begin to explore the
effects of parameter variation and hence the evolvability of
this system. The effects of variation in the rate constants and
expression level of the various kinases on the steady-state
MAPK-PP phenotype are shown in Figures 6–12. We refer
to these graphs as phenotypic surfaces (Rice 1998; Nijhout
2002). The sensitivity of a system to mutations in a given
gene is proportional to the slope of the phenotypic surface in
the direction parallel to the axis that represents that genetic
property. Thus, in areas where the surface is flat and orthog-
onal to the phenotypic axis, the systems would be insensitive
to mutations and genetic variation in that region would be ef-
fectively neutral, because changes in genetic values have no
effect on the phenotype.

Variation in kinase activity
We first examine the effects of variation in the rate con-
stants. Figure 6 illustrates the sensitivity of the system to
variation in the first and second kinase rate, under different
strengths of stimulation by ligand. Here we vary the ligand
concentration from about its half-saturation level to its full
saturation level (cf. Fig. 2). At full ligand saturation, the
steady-state behavior of the MAPK cascade is relatively in-
sensitive to genetic variation over a large portion of the range
of values of the rate constants considered.

At subsaturating levels of ligand, the system is very sen-
sitive to genetic variation in the kinase rate constants. This
is evidenced by the fact that there is no horizontal flat re-
gion in the phenotypic surfaces except at high kinase rates
(Fig. 7). Thus, if the system typically works at saturating
levels of ligand, then one would predict that all but the most
severe hypomorphic (or null) mutations in the kinase rate
constants would be neutral with respect to this phenotype.
As a result, one would expect to find a lot of small-level ge-
netic variation in the rate constants of the kinases, which
would be detectable as sequence variation in the coding re-
gions of the kinases.
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Fig. 6. (A–C) The effect of variation in the three kinase rate con-
stants (f1, f2, and f3) on the responsiveness to ligand stimulation.
The diagrams represent phenotypic surfaces that describe how the
steady-state level of MAPK-PP depends on the values of two pa-
rameters. The steady-state concentration of MAPK-PP levels off
at high ligand concentration and also at high values of each of the
kinase rate constants, so in this region variation in either parame-
ter has little or no effect on the phenotype. At a given level of
stimulation by ligand, the steady-state level of MAPK-PP de-
pends on the value of the kinase rate constants. To obtain high
levels of MAPK-PP, it is necessary to have higher kinase rates for
the downstream (f3) than for the upstream (f1) members of the
cascade.

Fig. 7. Relative sensitivity to variation of the first (f1) and second
(f2) kinase constants under different levels of stimulation by
ligand (L). At and near saturating levels of ligand (A, L � 0.1; B,
L � 0.05) the phenotypic surface has a large flat region where
variation of the kinase rate constant has no effect on the MAPK-
PP phenotype. Near half-saturation (C, L � 0.01) MAPK-PP lev-
els are sensitive to a broad range of kinase activities.
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Figure 9 we illustrate the relative sensitivities of MAPK-PP
delivery to variation in kinase and phosphatase activities at
the first level of the cascade. The relative sensitivity to phos-
phatase appears to depend on whether stimulation by ligand
is below or above saturation. At or above saturation the sys-
tem is almost completely insensitive to variation in phos-
phatase activity, except at very low kinase rates, whereas at
subsaturating levels of ligand, variation in phosphatase can
have a dramatic effect on variation in deliverable MAPK-PP.

Variation in expression level
In addition to genetic variation in kinetic activity, there can
be genetic variation in expression level. Genetic variation in
the expression level of a gene that is not due to genetic vari-
ation in its transcriptional activators or inhibitors must be
due to variation in the regulatory region of the gene. Varia-
tion in the expression level of the kinases is simulated by
variation in the value of N. This can have a large effect on the
amount of deliverable MAPK-PP. Figures 10 and 11 show
that variation in the expression level of MAPK generally has
a large effect on deliverable MAPK-PP, which increases lin-
early with increasing levels of the kinase. By contrast, the ef-
fects of variation in the expression level of either MAPKK
or MAPKKK is strong at low expression levels but saturates
at higher levels. Thus, genetic variation in the regulatory re-
gion of MAPK would be expected to have a profound effect
on this phenotype, over a broad range of values, and would

Fig. 8. The first derivatives of MAPK-PP with respect to f1 (light
gray surface) and f2 (dark gray surface). The value of the first de-
rivative indicates the slope of the phenotypic surface of Figure 7C
in the direction of the nominal axis. The derivative with respect to
f1 is largest wherever f1 � f2. The sensitivity of the phenotype to
genetic variation is proportional to the slope of the phenotypic
surface, so this implies that if f1 � f2 the phenotype is more sensi-
tive to genetic variation in the first kinase constant than to varia-
tion in the second one. Under stabilizing selection, the system will
tend to tolerate less genetic variation in f1 than in f2.

It is worth asking whether ligands typically occur at
supra- or subsaturation levels. If the principal function of the
cascade is to produce a switch-like response, then one would
expect stimulating concentration of ligand to generally be
suprasaturation. If, on the other hand, it is necessary to dy-
namically control the level of MAPK-PP in response to a
graded signal, then one would expect the ligand level to be
centered roughly at half-saturation, because that is where
one would obtain the most accurate and sensitive control.
MAPK-PP levels typically fluctuate dynamically and are at
peak level for only very brief periods, if at all (e.g., Bron-
dello et al. 1997). These kinds of fluctuations could be ob-
tained by very brief suprasaturation pulses of ligand (e.g.,
Fig. 3D), or they could come about through dynamic fluctu-
ations in the level of ligand. In the latter case we would ex-
pect the ligand levels to remain at subsaturation levels.

We can see from Figure 7 that the level of ligand should
have a profound influence on the evolvability of the system.
If the ligand level is typically above saturation, then a situa-
tion like that depicted in Figure 7A should be obtained. In
this case we would expect most variation in the rate con-
stants to be neutral with respect to phenotypic variation, as
we just noted. But if the ligand is typically below saturation,
we would expect a situation like that depicted in Figure 7C,
in which the level of MAPK-PP is very sensitive to genetic
variation in one or another of the rate constants. The sensi-
tivity of the phenotype to genetic variation is proportional to
the slope of the genetic surface (Nijhout 2002), so we can ex-
amine the relative sensitivities to the two rate constants
shown in Figure 7 by plotting the first derivatives with re-
spect to the rate constants. Figure 8 illustrates the first deriv-
atives with respect to each of the rate constants as a function
of both rate constants. The system is most sensitive to varia-
tion in f1 whenever f1 � f2, and vice versa. We noted above
that f2 is likely to be substantially larger than f1 when N1 is
smaller than N2 and N3. Under these conditions, the system
should be more sensitive to variation in f1 than to variation in
f2. If this is true, then under stabilizing selection one would
expect stronger selection against variation in f1 than to vari-
ation in f2. Recently, Riley et al. (in press) showed that in
Drosophila there is little or no sequence variation in the up-
stream members of the Ras-mediated MAPK cascade,
whereas the middle members of the cascade are much more
variable. This suggests that the upstream members are sub-
ject to strong purifying selection and that selection on the
middle members is much weaker. This indicates that the sys-
tem is much less tolerant of genetic variation in MAPKKK
than in MAPKK, which could be explained if f1 � f2.

Variation in phosphatase activity
In general, one expects the phosphatase activity to be smaller
than the kinase activity, so that the equilibrium upon stimu-
lation would favor the accumulation of activated kinases. In
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Fig. 10. (A–C) The effects of variation in the expression level (N)
of the three kinases on the response of MAPK-PP to ligand (L)
concentration. The expression level controls the number of mole-
cules of each kinase that are present. Increasing expression of the
first two levels of the cascade (N1 and N2) does not result in an in-
crease in the maximum steady-state of MAPK-PP, which depends
only on the expression level of MAPK itself (N3). Variation in
ligand concentration has little effect on the steady state of MAPK-
PP except at very low levels of expression of the kinases.

Fig. 9. The effect of variation in kinase rate (f1) and phsosphatase
rate (r1) of the first level of the cascade on the steady-state level of
MAPK-PP, under two levels of stimulation by ligand (L). (A) L �
0.05 (saturating); (B) L � 0.01 (near half-saturating).

be expected to be under stronger selection than variation in
the regulatory regions of the two upstream kinases.

Evolvability of sensitivity to stimulation
Ultrasensitivity of the MAPK cascade emerges from two
structural features: the multiplicity of steps in the cascade
and multiple phosphorylation of some members of the cas-
cade (Huang and Ferrell 1996) (Fig. 1). Hence, the principal
ways of genetically changing the sensitivity of the system
are to have genetic variation in the number of steps in the
cascade or in the degree of phosphorylation of the relevant
steps. Neither of these changes could be accomplished by
mutational changes in the existing system but would require
the intervention of new regulatory events. Hence, these ways
of altering the sensitivity to stimulation should probably be
thought of as differences in kind rather than degree. Adding
phosphorylation sites, and adding levels to a cascade, would be



Nijhout et al. Studying evolvability with MAPK 291

Fig. 12. Cascades of different levels differ in their response to
stimulation by ligand (L) and variation in the kinase rate of the
first member of the cascade (f1). (A) One-level cascade; (B) two-
level cascade; (C) three level cascade. z axes represent the steady-
state responses of the last members of each cascade. These graphs
show clearly that the shape of the phenotypic surface and the local
slopes change when the mechanism changes. Adding members to
a cascade makes the steady-state level of the last member increas-
ingly insensitive to variation in ligand and the first kinase (f1).

Fig. 11. (A–C) The relative effects of variation in the expression
level of the three kinases on the level of MAPK-PP for ligand con-
centration L � 0.05. Each graph shows the effect of a different
pair-wise combination of the three kinases. The phenotypic sur-
faces for the first two kinases are nearly flat, indicating that varia-
tion in their expression has little effect on the steady-state level of
MAPK-PP. Therefore, selection for increased levels of MAPK-
PP will not favor alleles that increase the expression level of the
first two kinases.
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considered to be evolutionary novelties at the molecular level.
It would be interesting to know whether these kinds of changes
are inherently less probable than mutational changes in the ac-
tivities or the expression levels of the members of the cascade.

Mutational changes in rate constants and expression lev-
els can alter the sensitivity to stimulation, but only hypomor-
phic mutations can do so, and these also diminish the overall
level of deliverable MAPK-PP (Figs. 6 and 7). Hypermor-
phic mutations in general are expected to be without pheno-
typic effect, just as in the case of the MAPK-PP phenotype.
Thus, mutational variation in the members of the cascade
cannot increase sensitivity to stimulation but can, in many
cases, decrease this sensitivity.

Evolvability of signal persistence
Quantitative differences in the persistence of active MAPK
can cause qualitative differences in the nature of the cellular
response. In PC12 cells, a brief persistence triggers cell divi-
sion, whereas a prolonged persistence causes the cell to be-
gin differentiation (Marshall 1995). The rate of decay of ac-
tive MAPK is governed almost entirely by the rate of
inactivation of the receptor complex (Fig. 3). The strength of
the negative feedback within the cascade can also affect per-
sistence of the signal. The effect of variation in feedback can
be modeled by varying the phosphatase rate constants (r1 and
r3) through which the feedback inhibition takes place (Fig. 1).
The effect of variation in these parameters is illustrated in
Figure 5. Here signal persistence is accompanied by a slight
increase in the peak level of MAPK-PP.

Evolvability of robustness
Robustness refers to the ability of a system to withstand vari-
ation in those genetic or environmental factors that are es-
sential for the generation of the phenotype (Nijhout 2002).
The phenotype is robust to a given factor, say the value of a
rate constant, if variation in that value has little or no effect
on the phenotype. From the various bivariate plots shown
above, it is clear that there are large regions of parameter
space where the phenotypic surface is flat and normal to the
phenotype (z) axis. In these regions, variation of the relevant
parameters does not produce variation in the phenotype, and
hence the phenotype is robust to that variation.

Robustness can thus evolve by mutations and selection
that move genotypes into a region where the phenotypic sur-
face is flat. Evolvability of robustness thus exists if a flat sur-
face is within “reach” of genetic variation and mutation. For
the steady state, simply increasing the values of the forward
reaction constants can make the MAPK-PP level robust to
their variation, because they in effect take the system to sat-
uration. The flat horizontal regions of the phenotypic sur-
faces in Figures 6, 7, 10, and 11 represent regions where the
phenotype is robust to variation in the relevant parameters.

Robustness can also evolve, not by moving the genotype
into a flat region of the surface but by altering the local shape
of the surface through evolutionary changes in the underly-
ing mechanism. As a result, the surface around a given geno-
type (or set of parameter values) can go from being steeply
sloped to being nearly horizontal and flat. Figure 12 illus-
trates how the addition of members to the cascade has had
such an effect. Figure 12 also illustrates the effect of sensi-
tivity to ligand (e.g., growth factor), and of variation in the
kinase rate of the first step in the cascade, on the steady state
level of the last member of the cascade for a cascade of one,
two, and three steps.

CONCLUSIONS

In the absence of genetic variation there can be no evolution.
Genetic variation by itself, however, does not produce evolv-
ability if it does not cause phenotypic variability. Evolvabil-
ity is therefore a function of the way genetic variation inter-
acts with the molecular and developmental mechanisms that
produce the phenotype. Here we have explored a way of
studying the evolvability of phenotypes that are produced by
a relatively simple genetic mechanism, the MAPK signaling
cascade. Because the parameters in this system represent the
activities and expression levels of genes, evolvability is
equivalent to the sensitivity of the properties of this system
to parameter variation. A convenient way of depicting this
sensitivity is by means of phenotypic surfaces. The sensitiv-
ities are proportional to the slopes of these surfaces (Nijhout
2002). Gene interactions are typically nonlinear, and this
causes the quantitative effects of genetic variation to be con-
text dependent. The phenotypic surfaces provide a conve-
nient way of visualizing the ways in which variation in one
gene affects sensitivity to variation in another.

Phenotypic surfaces are graphical representations of a
mathematical model of the phenotype, and their shape is
therefore completely defined by the structure of the model.
The axes of a particular plot represent a range of genetic vari-
ation. Individual genotypes can be represented by points on
the surface, and populations with genetic variation would be
represented by a distribution of points. Mutations move ge-
notypes from one place to another on the surface, and selec-
tion on populations alters the distribution of genotypes.
Given a certain amount of genetic variation, selection on the
phenotype will move the population mean genotype only if
the phenotypic surface is not flat and normal to the pheno-
typic axis. This is because in flat horizontal regions genetic
variation has no effect on the value of the phenotype. The
way in which allele frequencies respond to selection on the
phenotype depends on the covariance between genetic vari-
ation and phenotypic variation. The covariance between ge-
netic and phenotypic variation depends on two factors: the
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slope of the surface and how broadly individuals are distrib-
uted on the surface (Nijhout and Paulsen 1997; Nijhout 2002).
Formulas for how the correlations and covariances can be cal-
culated from the slopes of the phenotypic surface and the ge-
netic variances of a population are given by Nijhout (2002).

The model mechanism gives us a way of constructing
phenotypic surfaces but does not tell us how individuals are
distributed on the surface. To locate individuals and popula-
tions on the surface, we must know the individual’s parame-
ter values. Parameter estimation is typically the most prob-
lematic part of mathematical modeling. Even if parameter
values have been established experimentally, they are often
determined under artificial controlled conditions, and this
leads to uncertainty as to how closely they resemble the val-
ues that obtain in a normally operating system. In the vast
majority of developmental mechanisms, we have little or no
information at all about parameter values. Experimental de-
velopmental genetics has been concerned primarily with de-
termining the connectivities of regulatory networks rather
than the kinetics of their operation. The behavior of these
networks under genetic variation is typically tested using
mutations of extreme effect. Little or no information is pres-
ently available on the actual parameter values or on the range
of parameter values in natural populations. This dearth of in-
formation greatly limits the predictive power of mechanistic
models of evolvability like the one we presented here.

An explicit mathematical model of a developmental mech-
anism does, however, allow us to examine how genetic vari-
ation affects the function of the system. We have explored
two ways in which the effects of, and constraints on, this
variation can be examined: by means of a steady-state equa-
tion and by means of nondimensional equations. The steady-
state formulation allows us to examine regions of parameter
space where the system is most or least sensitive to genetic
variation. Even though in its normal operation the system
may never be at steady state, the steady-state equation nev-
ertheless allows one to examine how sensitive the behavior
of the system is to variation of parameter values over a broad
range of operating points. The nondimensional forms of the
equations, by contrast, give us information on trade-offs
among parameter values. This information is essential to de-
termine whether some mutations effectively cancel the ef-
fects of others and helps us understand how tolerance to vari-
ation in one gene can be constrained by variation in another.

Our analysis of the MAPK cascade shows that the re-
sponse to stimulation saturates under high stimulation over a
broad range of parameter values. Phenotypic surfaces level
off and are flat at high genetic values, and this illustrates that
there are firm limits to which the system can respond to up-
ward selection on the phenotype, even in the presence of ge-
netic variation in the underlying mechanism. Where the phe-
notypic surface is horizontal and flat there is no phenotypic
variation, and thus nothing for selection to act on.

If in its normal operation the cascade merely switches be-
tween being maximally activated and completely inacti-
vated, then it is possible that the wild-type ligand levels and
kinase rate constants are such that the system saturates and
the active phenotypes lie somewhere on the flat portion of
the phenotypic surfaces. It is unlikely, however, that pheno-
types lie very far from the “edge” of a surface because there
is no obvious mechanism of selection that can move a geno-
type deeply onto a flat phenotypic surface, at least not by se-
lection on this phenotype. If, however, the cascade works by
dynamically modulating the level of MAPK-PP rather than
as an all-or-none switch, then the wild-type genotypes may
be such that regulatory variation in the system occurs mostly
in the sloping portion of the phenotypic surfaces. This im-
plies that the system should be intolerant of genetic variation
in the region where the slopes are steep, because genetic
variation in those regions would mask regulatory variation.
Indeed, the findings of Riley et al. (2003) on genetic varia-
tion in the MAPK cascade are most easily explained if ge-
netic variation within the steeply sloping regions is effi-
ciently eliminated.

The above observations thus suggest two constraints on
parameter values. First, it is unlikely that parameter values
occur deeply into a flat region of the phenotypic surface, and
second, it is unlikely that parameter values occur where the
phenotypic surface is steeply sloped. It is therefore most
likely that normal parameter values will lie near the edges of
the phenotypic surfaces. Mutational variation in the direction
of the slope should be eliminated by selection, because it
would interfere with normal regulation, whereas mutational
variation into the flat region of the phenotypic surface would
be neutral to mutation and could therefore accumulate. One
might therefore expect drift to gradually take genotypes
deeper and deeper onto the flat regions of a phenotypic sur-
face, although this would require mutations that increase the
activity of the kinase, which would be expected to be much
rarer than mutations that diminish the activity.
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