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Abstract.—Allometries among body parts of adult holometabolous insects differ from allome-
tries among body parts of many other animals because adult structures (many of which are
derived from imaginal disks) do not grow synchronously with the body. Imaginal structures
grow little during larval life but experience most of their growth during the prepupal and pupal
period, after food intake and somatic growth have ceased. Growth of imaginal tissues thus
occurs in a closed system at the expense of nutrients accumulated during larval life. In a closed
system, growing imaginal tissues compete for available nutrients, and the growth trajectory and
final size of one tissue (or disk) are influenced by the growth of others. We use the Gompertz
growth equation and a model of growth in a closed system in which imaginal disks compete for
nutrients to model the growth of imaginal disks and the resulting allometric relations among
them. By incorporating known features of ant caste development, such as reprogramming of the
critical size for metamorphosis in major workers (soldiers) and reprogramming of developmental
parameters in individuals larger than a critical size, we show that the nonlinear and discontinuous
allometries of ants with polymorphic castes result from normal developmental processes during
the metamorphosis of holometabolous insects. The imaginal disk competition model predicts
that when one disk is reprogrammed, others will show a compensatory response. Such correlated
developmental responses may play a role in the evolution of body proportions in ants, rhinoceros
beetles, and other insects.

Changes in the relative growth of tissues, organs, appendages, and other body
parts are the basis for much of the morphological evolution observed at taxonomic
levels below the phylum and class (Gould 1966; Alberch et al. 1979). This observa-
tion has found its most elegant expression in the Cartesian transformations
whereby D’ Arcy Thompson attempted to map complex morphological differences
between species as large-scale differences in growth gradients (Thompson 1942;
Bookstein 1978), and its most generally useful one in the analyses of allometry
that allowed Huxley to deduce that many changes in form are simple mechanical
consequences of differences in the intrinsic growth rates of body parts (Huxley
[1932] 1972).

Differences in the relative growth of body parts can account for much intraspe-
cific variation of form, as well as for the diversity of form we observe between
taxa. Differences in the growth rates among body parts are referred to as allomet-
ric growth. It is common practice to study allometric growth on the basis of
bivariate plots of the dimensions of two body parts or the dimension of a body
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part against body size. After logarithmic transformation of the measures (and an
appropriate transformation of each measure to bring both to the same dimension-
ality), simple allometric growth is characterized by a straight-line relationship
among the two variates. A broad diversity of morphological and functional varia-
tion has been shown to fit such simple linear allometric relationships (Cock 1966;
Gould 1966; Huxley 1972; Schmidt-Nielsen 1984).

Allometric relationships in holometabolous insects present a special problem
that arises from the fact that the appendages of the adult develop from structures
that do not grow at the same time as the larval body. Imaginal disks for append-
ages, head structures, and portions of the thorax grow very slowly during most
of larval life and then undergo a brief period of explosive growth just before
metamorphosis (Williams 1980). The growth of most imaginal structures is con-
centrated in the prepupal and pupal periods and usually occurs at a time when
food intake (and therefore body growth) has ceased. This fact and the difficulty
it poses in interpreting patterns of relative growth in holometabolous insects have
long been recognized (Huxley 1931, 1972; Wilson 1953) but have received little
attention in models of growth and allometry. It is clear, however, that the patterns
of growth that generate many adult features in holometabolous insects produce
allometric relations that are fundamentally different from those observed in ani-
mals whose body parts grow continuously and synchronously as the body grows.

The peculiar way in which adult Holometabola are built has two consequences
for allometry. First, where allometric relations among body parts exist, they
cannot be interpreted as straightforward results of relative growth. This is particu-
larly true when the dimensions of adult appendages are compared to overall body
size, since the two grow at different times during development and under very
different endocrine and nutritive conditions. Second, some of the unusual allo-
metric relations found in insects, such as the curvilinear and discontinuous al-
lometries found in worker castes of ants (Wilson 1953; Feener et al. 1988; Wheeler
1991) and beetles (Huxley 1931, 1972; Emlen 1994; Kawano 1995), might be
explained in part by interactions among imaginal tissues during metamorphosis.

In this article, we explore the process of allometry in holometabolous insects
by comparing patterns of allometry found in ants to patterns produced by two
models of growth. The first model applies the Gompertz equation to the growth
of individual imaginal disks during the prepupal and pupal period. When the
Gompertz equation is used to model the growth of imaginal disks, it can generate
linear and curvilinear allometries similar to those observed in many ants. In the
second model, imaginal disks grow at the expense of nutrients stored in the
prepupal stage and disks compete for limiting nutrients. We compare allometries
produced by the second model, which is based on more realistic assumptions
about imaginal growth in holometabolous insects, to those produced by the
Gompertz model. Under some conditions, both models yield qualitatively similar
allometry curves, but the disk competition model is biologically more realistic
and produces a greater diversity of realistic allometry curves. Most importantly,
the disk competition model makes certain predictions not made by the Gompertz
model, which are confirmed by observations on the allometries of ants and scarab
beetles. Although the disk competition model is based on known developmental
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and physiological processes in ants, the principles should be applicable to holome-
tabolous insects in general.

GROWTH RATIOS, GROWTH-PARTITION COEFFICIENTS, AND GROWTH IN CLOSED SYSTEMS

Huxley (1972) considered two types of growth relations that can lead to allome-
try. The first, differential growth ratios, obtains when two structures grow simul-
taneously (such as carapace width and interocular distance in crustaceans, or
brain volume and body weight in vertebrates). In most such cases, the bivariate
allometry curve also traces a portion of the growth history of both structures. The
second, growth-partition coefficients, obtains when one structure grows while the
other is static (such as yearly antler growth in deer). In such cases, the new
structure develops in proportion to the current body size of the animal, and the
allometry curve simply describes this static relationship.

Allometry in holometabolous insects corresponds to neither of these alterna-
tives. Unlike deer, which continue to feed while they regenerate antlers, holome-
tabolous prepupae and pupae are essentially closed systems during the period of
imaginal disk growth and development. While the imaginal structures grow, the
animal does not feed, so that imaginal disk growth actually occurs at the expense
of overall body size. If nutrients are limiting, then it is also possible that one disk
may grow at the expense of another.

ALLOMETRY OF HOLOMETABOLOUS APPENDAGES

To model allometry in holometabolous insects, we first modeled growth of
imaginal disks. Disks may differ in their initial size, their rate of growth, or the
duration of their developmental period. The allometry relation consists of the
final dimension of the imaginal structure produced by the disk plotted against a
second structure for a set of individuals. The second structure can be another
disk or a measure of body size. Figure 1 illustrates two ways in which such an
allometric relation can be obtained.

THE THREE DEVELOPMENTAL MECHANISMS OF CASTE

The most unusual allometric relations among body parts are found among the
various morphological castes of ants (Wilson 1953). Understanding the develop-
mental causes of caste differentiation in ants has proven to be essential for under-
standing these allometric relations and leads to a model for nonlinear and complex
allometries that may apply to the holometabolous insects in general. The diversity
of physical caste systems in worker ants can be classified into four major catego-
ries, based on the form of log-log plots of two body parts and their size frequency
distribution (Wilson 1953, 1971; Oster and Wilson 1978). Ant allometries can be
linear, curvilinear (it is often ambiguous whether curvilinear allometries are made
up of two intersecting linear allometries or are indeed smoothly curvilinear),
triphasic (with three intersecting lines or a sigmoid curve), or completely dimor-
phic (made up of two discontinuous and displaced lines). It has been shown
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Fi6. 1.—Two mechanisms for obtaining allometric relationships among body parts in holo-
metabolous insects. A, Allometry is the result of differences in the duration of the growth
period of imaginal disks (or other adult body parts) that are following identical growth trajec-
tories. This model assumes that in large pupae, disks grow for longer periods of time than
in small pupae. The Gompertz model discussed in the text produces allometries by this
mechanism. B, Allometry is the result of differences in growth rates of disks in individuals
of different sizes. Disks in larger pupae grow more rapidly, while the duration of growth is
the same in pupae of all sizes. The disk competition model described in the text produces

allometries by this mechanism.
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(Wheeler 1991) that these four major categories and their variants can be pro-
duced by variation in only three developmental processes. First, there is variation
in the values of the growth parameters of body parts, such as the relative growth
rates of those parts, their initial sizes, and any internal or external constraints on
their growth that might exist. Second, variation occurs in the setting of the critical
size, which is defined as the size at which a developing larva takes the first
physiological steps to initiate metamorphosis (Nijhout 1981, 1994). This leads to
variation in absolute size. Third, reprogramming of the critical size and the
growth parameters can take place during development, in response to environ-
mental and endocrine cues. Reprogramming is believed to play an important role
in the determination of size range, multimodality, and dimorphism in worker
caste systems (Wheeler 1991). It has also been documented as one of the principal
causes of worker polymorphism in Pheidole bicarinata (Wheeler and Nijhout
1983). Reprogramming of developmental parameters occurs when developmental
hormones such as the juvenile hormone are secreted (or disappear) during certain
critical periods in the molting cycle. Empirical and experimental data have dem-
onstrated the significance of each of these three components in the development
of insect polymorphisms in general and in caste determination in particular (Nij-
hout and Wheeler 1982; Wheeler 1991; Nijhout 1994). These developmental fea-
tures are essential components in the models we present below.

RESULTS

Allometry and the Gompertz Function

An appropriate equation describing the growth of organisms is the Gompertz
function. This function describes a sigmoid pattern of growth and has been shown
to fit observed data in a broad range of organisms and over a wide range of
absolute sizes (Laird 1965; Wilbur and Collins 1973; Ricklefs 1979). The Gom-
pertz function describes a growth rate that declines as mass grows:

dSldt = ASe™ ™, (D

where S is size, A is the exponential growth rate, and « is the exponential damping
of A (Laird 1965; Edelstein-Keshet 1988; Jolicoeur 1989). The exponential growth
rate is generally assumed to be the consequence of a constant frequency of cell
division (Katz 1980) or of a growth rate that is proportional to size. The physiolog-
ical basis of the damping factor is more obscure, even though the phenomenon
is well documented. Damping may result from an increasing limitation of nutrients
as tissues get larger, which, in turn, could be due to a decreasing surface-to-
volume ratio or an inability of the rate of supply of nutrient to keep up with
ever-increasing growth requirements of the cells and tissues. A Gompertz growth
trajectory eventually reaches an asymptote with a value of A/a + In(S,), where
S, indicates initial size.

Bivariate plots of the sizes of two structures generated by different relative
values of the constants in the Gompertz equation yield allometric patterns ob-
served in many systems (Laird 1965; Wheeler 1991). To obtain an allometric
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Fic. 2.—Disk-disk allometry based on Gompertz growth, illustrating the effects of inter-
disk differences in A (growth rate) and o (damping coefficient) on the shape of the allometry.

relationship, it is necessary to vary absolute body size, which, with the Gompertz
equation, is done by varying the time allowed for growth. A bivariate logarithmic
plot of the size of two body parts, measured at a series of times along their growth
trajectory, will give the allometric relation between those body parts.

Figure 2 illustrates the forms of the bivariate allometry plots based on this
assumption, for body parts that differ in initial size (S,), growth rate (4), or
damping factor (o). Changes in initial disk size (S,) affect only the intercept of
the allometry curve, not its slope. Changes in initial growth rate (A) affect the
slope of the curve and determine the traditional allometric coefficient. In general,
the slope of the allometry curve is A,/A,. When the damping factor () of the
two body parts is not the same, the allometric relation between them becomes
curvilinear. If the body part plotted on the ordinate has a higher damping factor
than the reference body part, the slope of the plotted curve will decrease with
increasing overall size. Conversely, a lower damping factor will produce a curve
with increasing slope.

Reprogramming with the Gompertz Function

Nonlinearity and internal discontinuity are common features of bivariate plots
of size variation in worker castes in ants (Wilson 1952; Wheeler 1991) and dimor-
phic males in beetles (Emlen 1994; Kawano 1995). We have found that a number
of these “‘unusual’’ allometry patterns found in ants can be simulated by a model
that combines the Gompertz equation with reprogramming of the variables of
growth (A, a). Figure 3A shows the diversity of allometries that can be generated
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Fic. 3.—Allometry based on Gompertz growth with reprogramming. A, The effect of
reprogramming A or « in the middle of the growth period. B, In addition to reprogramming
A or a, the critical size is also reprogrammed, which leads to a discontinuity in the allometry
plot. Key to labels: a, a reprogrammed downward; b, A reprogrammed upward; ¢, no repro-
gramming; d, A reprogrammed downward; e, o reprogrammed upward.

by reprogramming these growth parameters during development. Reprogramming
the growth rate alters the slope of the allometric curve, while reprogramming the
damping factor alters the shape of the allometry curve. In addition, when critical
size is also reprogrammed, the second portion of the plot is displaced, producing
a spatially discontinuous allometry curve (fig. 3B) of the type common in many
ants (illustrations in Wilson 1953; Wheeler 1991).

Gompertz growth, particularly when combined with reprogramming, can
clearly produce a broad variety of complex allometries among imaginal structures
that resemble those found in many species of ants. But there are several reasons
that Gompertz growth does not provide a fully adequate biological model for
the growth of imaginal disks. First, the Gompertz function does not contain an
independent variable for body size: variation in body size can be modeled only
by variation in the length of the growth period. Although this approach can accu-
rately model reprogramming of the critical size for metamorphosis, it is not a
realistic model for imaginal disk growth insofar as the duration of the prepupal
and pupal periods of large individuals do not differ significantly from those of
small individuals in a population. Second, although « provides a means for damp-
ing growth, this parameter does not correspond to an identifiable physiological
function (though it could be made to do so by appropriate modification). Third,
the Gompertz equation does not provide a way to model explicitly the closed
environment of the prepupa and thus does not allow us to examine the possible
interactions between disks growing in a common environment or the possible
effects of limitation of stored nutrients.
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An Imaginal Disk-Interaction Model

Here, we develop a model of growth based on competition among body parts
that generates allometry plots more diverse than those generated by the Gompertz
equation and in which all parameters have an unambiguous and empirically testa-
ble biological meaning. Typically holometabolous larvae build up large stores of
lipids, carbohydrates, and storage proteins during the growth period to meet the
demand of pupal development and adult reproduction (Wigglesworth 1965). Dur-
ing the prepupal period, food intake ceases, and the level of stored nutrients
drops precipitously over the subsequent course of pupal development as these
stores are used in metabolism and the construction of imaginal structures.

The imaginal disks that will make up the head and appendages of the adult
insect undergo most of their growth during the prepupal period, after feeding has
stopped. The prepupa must allocate a finite supply of reserves that have been
accumulated during larval life (in the form of fat body, hemolymph proteins, and
other tissues) to fashion the adult body form. The dimensions of all body parts
of the adult are determined during the prepupal stage and must necessarily be
influenced by the amount of ‘‘building material’’ available within the closed
system.

The growth of imaginal structures can be modeled as the growth of an assem-
blage of entities competing for a fixed and perhaps limited nutrient resource that
was accumulated during the larval stage. Different imaginal structures may differ
in their efficiency of resource utilization, which will influence their relative growth
rates. Perhaps most importantly, the gradual depletion of nutrient reserves pro-
vides a built-in damping factor for growth and sets an upper limit to the size of
each imaginal structure. We believe that this view of a pupa, as a closed miniature
ecosystem with limiting resources and competing consumers of those resources,
provides a useful and ultimately correct model in which the relative growth of
imaginal structures can be studied.

We assume a system composed of a body containing two independent imaginal
disks, each of which grows at a rate proportional to its current size and to the
concentration of nutrients according to

ds,/dt = lefN
and
ds,/dt = szgN, )

where § is the size of the disk, N is the concentration of nutrient, and &, and k,
are reaction constants that describe the intrinsic rate of growth and the efficiency
of nutrient utilization. The exponent P is a coefficient whose value can be used
to model a structural constraints on growth. For instance, if S is mass and growth
is proportional to surface area, then a spherical structure can be modeled by
setting P to a value of 2/3. In all but one of the figures below, P = 1. The nutrient
N is assumed to be present continuously as a mass parameter that is depleted by
the growing disks at the rate

dNldt = — (kST + k,ST)N . 3)
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Disk size S and nutrient quantity N are assumed to be expressed in the same
units of mass, so the model essentially transforms nutrient mass into disk mass.
This model can be readily expanded to include more than two competing imaginal
structures. Variation in body size can be modeled by variation in N. For the
purposes of the present article, we assumed that one-third of the body mass at
the time that prepupal development starts is composed of available nutrients. We
also assume that the developmental period during which disk growth occurs is
the same for all individuals, irrespective of body size, because in most species
of insects that have been studied the duration of the pupal stage is the same for
individuals of different body sizes. Alternatives to both assumptions can be
readily modeled (and the model could be extended to include hemimetabolous
insects if N is allowed to grow with time). The model produces damped growth of
imaginal disks; each disk eventually reaches a plateau when nutrient is exhausted.

Figure 4 illustrates the allometric relationships between body size and disk size
for different values of the initial size (§) and growth constant (k) of a single disk.
The shapes of the allometry plots in figure 4 thus allow examination of the effects
of the relative dimensions of parameter values in the model. Each point in these
graphs represents the end point of the growth trajectory of an imaginal disk given
a different value of N and thus body size (cf. fig. 1B). The allometries in figure
4 span a range of body sizes of two orders of magnitude in mass. Insofar as real
intraspecific allometries generally span one order of magnitude or less, these
curves represent extended allometries of broader range than are likely to be found
in nature. Species whose body size is small relative to the sizes of their disks
will have allometries that resemble the left-hand portions of the curves in figure
4, while those with body sizes that are large relative to their disks will have
allometries that resemble the right-hand portions of those curves. The shape of
the allometry is also affected by the duration of the growth period. In the cases
illustrated, the disks did not grow long enough to exhaust the available nutrient,
as is indeed the case in life. When disks in all body sizes exhaust their nutrient,
the disk—body size allometry becomes linear. Thus, different values for initial
disk size, specific growth rates of disks, and relative amount of nutrient can
produce disk—body size allometries that are linear, concave, convex, or sigmoid.
In general, relatively large initial disk sizes and relatively small intrinsic growth
rates produce allometries that are concave (increasing slope with increasing body
size), while larger body sizes (and relatively smaller disk sizes) and higher growth
rates produce allometries that are more nearly linear or convex (decreasing slope
with increasing body size). The shape of disk-disk allometries is determined en-
tirely by the exponent P. If P is equal to one, the disk-disk allometries are linear;
whereas if P is greater or less than one, these allometries are curvilinear (fig. 5).

Reprogramming the Critical Size

In the ant Pheidole bicarinata, larvae destined to become soldiers are repro-
grammed to grow to a linear size about 1.6—1.8 times that of larvae destined to
become workers before they begin metamorphosis (Wheeler and Nijhout 1983).
Thus, the imaginal disks of a soldier grow within a body that is four to six times
the mass of that of a worker. If only the critical size for metamorphosis is repro-
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FiG. 4.—Allometries derived from competition model with a single disk, illustrating effects
of systematic variation in S and k on the shape of the allometry curve. Each point represents
the end point of a growth trajectory of an individual disk (cf. fig. 1B).

grammed, then body size—disk allometries of workers and soldiers should occupy
different regions of a single continuous curve. Thus, the curves in figure 4 can
also be interpreted as representing allometries of dimorphic ants, with the smaller
worker caste occupying the left portion of each curve and the larger soldier caste
occupying the right portion. In many ants that have a dimorphic worker/soldier
caste, the two castes clearly occupy different portions of a nonlinear but smoothly
continuous allometry curve (Wilson 1953; Diniz-Filho et al. 1994). In many cases,
however, the allometric curves of soldiers and workers are not smoothly continu-
ous but either intersect at an angle or lie parallel to one another (Wilson 1953;
Wheeler 1991). We show below that reprogramming of growth parameters at a
critical size leads to just such allometric relationships.

Reprogramming the Growth Parameters

When one disk is reprogrammed to grow at a higher rate in pupae whose body
size is above a critical size, a discontinuity in the allometry plot is produced.



50 THE AMERICAN NATURALIST

20 A 2 - B
~ 1+ 1+
g ~
- 0 2 0
P A
A -1 - EO -1
g
22+ 2+
-3 &l | L 3 e | |
1 2 3 -2 -1
log Body Size log Disk 1
2- 2 D
a1 - 1+
g ~
- 0 “ 0
2 a
a-lr g-r
oD
L 2k 2=
-3kl | | S I I |
1 2 3 -2 -1 0
log Body Size log Disk 1

Fi6. 5.—Allometries derived from the competition model with two disks, illustrating the
effect of altering the exponent P in equations (1) and (2). The top panels show body size—disk
(A) and disk-disk (B) allometries, when P = 1. The bottom panels show body size-disk (C)
and disk-disk (D) allometries when P = 2/3. In both cases, §; = 0.005, S, = 0.001, &k, =
0.001, and k, = 0.005.

These complex or broken allometries closely resemble the allometry relations
observed in a great diversity of polymorphic ants (Wilson 1953; Baroni Urbani
1976; Wheeler and Nijhout 1983; Feener et al. 1988; Wheeler 1991; Diniz-Filho
et al. 1994). Figure 6 illustrates the allometry of two disks that have identical
growth constants in animals with small body sizes while one of the disks is repro-
grammed to grow at several times (or at a fraction of) the rate of the other disk
in animals of larger body sizes.

When only one disk is reprogrammed, its rate of nutrient use changes. Because
all disks share the same nutrient pool, such a reprogramming event affects other
disks as well. As a consequence, the growth rate of disks that are not repro-
grammed also changes as less (or more) nutrient is now available to them. This
compensatory response of nonreprogrammed disks results in a discontinuity in
the allometry plot of all disks that share the nutrient pool, even if not all are
reprogrammed.

Reprogramming and the compensatory response of nonreprogrammed disks
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lead to particularly complex disk-disk allometries. It is easy to obtain broken
allometries with a partial overlap between the allometric curves of reprogrammed
and nonreprogrammed individuals, as well as with wide separations between the
allometric curves of reprogrammed and nonreprogrammed individuals (fig. 6). If,
in addition to reprogramming a growth parameter, the critical size is repro-
grammed upward, then the reprogrammed portion of the allometry is shifted to
the right, and the gap between soldier and worker allometries becomes larger.

DISCUSSION

The relationship between growth equations, such as the Gompertz model, and
allometry has been explored previously by Laird (1965) and Jolicoeur (1989),
though these authors restricted their studies to systems in which all parts grow
simultaneously with the body. In holometabolous insects, by contrast, the imagi-
nal structures begin to grow after all somatic growth has stopped and the total
mass of the system no longer changes (it declines somewhat, in fact, because
of metabolic losses; this decline was not modeled in the present study). This
characteristic makes the allometric relationships among body parts of adult holo-
metabolous insects fundamentally different from classical growth allometries. Al-
lometric relations between body parts and the whole body are complicated by
the fact that the parts grow at the expense of the body, not in parallel with it.

Throughout the preceding account, we have used the term imaginal disk to
refer to structures that compete for nutrients during development. In reality, of
course, all adult structures that grow during prepupal and pupal development
use the same resources and should thus be in competition with one another.
Accordingly, other imaginal structures that are not derived from imaginal disks
or that represent portions of a disk-derived structure (such as head width, scape
length, or femur length in ants or horn length in scarabeid beetles) should be
expected to participate in allometric relationships of the type described by our
competition model.

The existence of nonlinear allometries, sudden changes in slope, and gaps in
the allometric curve, has long been recognized (Cock 1966; Reeve and Huxley
1972; Forbes and Lopez 1989; Jolicoeur 1989). Previous attempts to analyze non-
linear allometries have relied largely on curve-fitting methods such as polynomial
regression and moving regression analysis (Baroni Urbani 1976; Feener et al.
1988; Forbes and Lopez 1989). While curvilinear regression methods can accu-
rately describe the shapes of complex allometric curves, the parameters of the
resulting model (in the case of polynomial regression, the terms of the polynomial)
seldom correspond to meaningful biological variables (Sokal and Rohlf 1981).
Curve-fitting methods and multivariate statistical analyses such as those of Diniz-
Filho et al. (1994) are useful if we wish to describe and categorize the shapes of
curves. Ultimately, however, we would like to understand the underlying causes
of nonlinear allometries. We would also like to understand the biological basis of
the differences in the allometry curves of different species and different organ
systems within a species. To do that, we must have a reasonably accurate model
for the processes that actually produce the allometry curves.



COMPLEX ALLOMETRY IN INSECTS 53

We have shown that a great diversity of nonlinear and discontinuous allome-
tries in the ants are the simple result of normal developmental processes in holo-
metabolous insects. The key to understanding the causes of complex allometries
lies in the observation that the growth of imaginal structures largely occurs after
the larval insect has grown to its maximal size and has stopped feeding. Imaginal
structures thus grow in a closed system using nutrients accumulated during larval
life and thus compete with each other when those nutrients are limiting. The
allometric relations between adult structures reflect the outcome of this compe-
tition.

We examined the characteristics of two growth models of body parts: the
Gompertz equation, which models damped growth, and a competition model that
treats the growth of imaginal structures explicitly as occurring in a closed system
with a limited amount of nutrient. Both growth models yield complex nonlinear
allometries that closely resemble those of polymorphic ants. The usefulness of
the Gompertz model is limited, however, by the facts that the damping coefficient
is an artificial parameter and that body size cannot be modeled independently of
development time. Thus, the Gompertz equation cannot be used to model all
three of the aspects of development (growth parameters, critical size for metamor-
phosis, and reprogramming) whose variation is the root cause of morphological
variation in caste determination in ants (Wheeler 1991). The competition model,
by contrast, describes duration of growth, body size, initial size of disks, and
growth parameters as independent variables. Damped growth in this model is not
an artificial variable but arises as an emergent property of nutrient depletion in a
closed system.

The competition model can be used to deduce the specific aspects of growth
and development responsible for producing allometries of particular shapes (figs.
4-6). If disk-disk allometries are not linear, then the exponent P in equations (2)
and (3) is greater or less than one. The shape of disk-body size allometries is
determined by the relative dimensions of the nutrient pool, the initial disk sizes,
and their intrinsic growth rates. It is worth noting at this point that to interpret
the shape of an insect allometry curve correctly, it is essential to know exactly
what is being plotted. For instance, it is commonplace in studies of insect allome-
try to use a linear measure of a body part such a femur length or width of thorax
(rather than total weight) as a proxy for body size. If the body part in question
is derived from an imaginal disk (a femur for instance), then the plot is essentially
a disk-disk allometry. If a structure such as the thorax is used, then it is necessary
to consider that its size is also affected by the growth of imaginal disks because
the pupa is a closed system, and excessive growth of disk-derived structures
must necessarily go at the expense of the remainder of the body. The dimension
of a nondisk structure may not be a simple function of body mass (if a linear
measure is taken, it will scale as the cube root of body mass minus disk mass) and
may therefore yield allometric curves different from the ones we have modeled.

Reprogramming of the critical size for metamorphosis or reprogramming of the
growth constants in individuals larger than a critical body size causes a disconti-
nuity in the allometry. If only critical size is reprogrammed, the allometries of
soldier and worker ants lie on different regions of a smoothly continuous curve,
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as in Oecophylla smaragdina (Wilson 1953). When soldier and worker allometries
do not fuse smoothly (i.e., when they intersect at an angle or lie parallel to
one another, as in Pheidole bicarinata and Camponotus festinatus; Wheeler and
Nijhout 1983; Wheeler 1991), the growth constant of one or both must have been
reprogrammed.

When reprogramming of a growth constant takes place, the competition model
predicts that disks that are not reprogrammed should have a compensatory re-
sponse to the increased (or decreased) growth rate of the reprogrammed disk. The
Gompertz model makes no such prediction. Because its parameters correspond to
real developmental and physiological variables, the disk competition model has
the virtue of being testable by experiment and observation. Compensatory
growth, for instance, could be demonstrated experimentally by showing that sur-
gical removal of one disk at the beginning of the prepupal period caused the
remaining ones to grow larger.

Compensatory growth can also be inferred from the shapes of allometry curves.
The data reported by Feener at al. (1988) on curvilinear allometries in Afta co-
lombica and Eciton hamatum suggest that some structures indeed compensate
for excessive growth of others. In both species, the allometric relationship be-
tween head width and body size has an increasing slope with body size (i.e., is
concave), and this increase in slope is more severe in Eciton than in Atta. In
contrast, the allometry of leg length with body size has a decreasing slope in both
species, with a more severe decrease in Eciton than in Atta. Allometry of thorax
length with body size has a decreasing slope in Eciton, whereas it is linear in
Atta. Thus, in both species, some parts of the adult body are proportionally
smaller than one would expect and are inversely correlated with the degree of
hypertrophy of the head.

In at least two species of dung beetles (Scarabeidae), there is a negative correla-
tion between horn length and relative head width (Rensch 1960; D. Emlen, per-
sonal communication), which suggests that large horns develop at the expense of
other structures in the head. Recent studies of four species of tropical rhinoceros
beetles (Scarabeidae) have demonstrated that in horned males, a positive allome-
try in horn length is associated with a negative allometry in wing length. Large
males have disproportionately large horns and small wings, and small males have
comparatively small horns and large wings (Kawano 1995).

If size compensation of imaginal structures produces maladapted phenotypes,
then compensatory responses constitute a form of developmental constraint on
the evolution of castes in ants and of body proportions in other holometabolous
insects. Presumably the degree of correlation among different imaginal structures
can be modified through selection so that some structures come to show a greater
(or lesser) compensatory response than others. Of course, the compensatory
response could, under certain circumstances, actually constitute a preadaptation
for the evolution of other functional specializations. In addition to the allometric
relationship noted above, Feener et al. (1988) show that in Atta, but not in Eciton,
the relative leg length decreases with increasing body size. Feener et al. (1988)
have interpreted these differences in relative leg length in large-bodied individuals
as ecological adaptations to the specialized foraging behaviors of each species.
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If the size of the leg is determined at least in part by its compensatory response
to increased head size, then the model we have presented opens the way for an
integrated view of the development and evolution of head size, leg length, and
foraging strategies in ants. In rhinoceros beetles, small hornless males are known
to disperse farther than large horned males (Eberhard 1980, 1982), which suggests
the possibility that the differences in the relative size of the wings of horned and
hornless males, which arose as an accidental consequence of horn development,
may have provided a preadaptation for the evolution of differences in the.dis-
persal behavior of the two morphs.

ACKNOWLEDGMENTS

We would like to thank D. Emlen, D. Feener, and P. Alberch for constructive
critical comments on the manuscript. We are particularly indebted to F. Adler
for helping us correct an error in our analysis and for pointing out the significance
of P. This work was supported in part by grant IBN-9220211 from the National
Science Foundation to H.F.N. and grant NIAID27403 from the National Insti-
tutes of Health and a grant from the Arizona Agricultural Experiment Station to
D.E.W.

LITERATURE CITED

Alberch, P., S. J. Gould, G. F. Oster, and D. B. Wake. 1979. Size and shape in ontogeny and
phylogeny. Paleobiology 5:296-317.

Baroni Urbani, C. 1976. Réinterprétation du polymorphisme de la caste ouvriére chez les fourmis a
I’aide de la régression polynomiale. Revue Suisse de Zoologie 83:105-110.

Bookstein, F. L. 1978. The measurement of biological shape and shape change. Lecture notes in
biomathematics. Vol. 24. Springer, New York.

Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Quarterly Review of
Biology 41:131-190.

Diniz-Filho, J. A. F., C. J. Von Zeuben, H. G. Fowler, M. N. Schlindwein, and O. C. Bueno.
1994. Multivariate morphometrics and allometry in a polymorphic ant. Insectes Sociaux 41:
153-163.

Eberhard, W. J. 1980. Horned beetles. Scientific American 242:124-131.

. 1982. Beetle horn dimorphism: making the best of a bad lot. American Naturalist 119:420-426.

Edelstein-Keshet, L. 1988. Mathematical models in biology. Random House, New York.

Emlen, D. J. 1994. Environmental control of horn length dimorphism in the beetle Onthophagus
acuminatus (Coleoptera: Scarabeidae). Proceedings of the Royal Society of London B, Bio-
logical Sciences 256:131-136.

Feener, D. H., Jr., J. R. B. Lighton, and G. Bartholomew. 1989. Curvilinear allometry, energetics
and foraging ecology: a comparison of leaf-cutting ants and army ants. Functional Ecology
2:509-520.

Forbes, T. L., and G. R. Lopez. 1989. Determination of critical periods in ontogenetic trajectories.
Functional Ecology 3:625-632.

Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587-640.

Huxley, J. S. 1931. Relative growth of mandibles in stag-beetles (Lucanidae). Journal of the Linnean

Society 37:675-703.

. (1932) 1972. Problems of relative growth. Dover, New York.

Jolicoeur, P. 1989. A simplified model for bivariate complex allometry. Journal of Theoretical Biology
140:41-49.




56 THE AMERICAN NATURALIST

Katz, M. J. 1980. Allometry formula: a cellular model. Growth 44:89-96.

Kawano, K. 1995. Horn and wing allometry and male dimorphism in giant rhinoceros beetles (Coleop-
tera: Scarabeidae) of tropical Asia and America. Annals of the Entomological Society of
America 88:92-99.

Laird, A. K. 1965. Dynamics of relative growth. Growth 29:249-263.

Nijhout, H. F. 1981. Physiological control of molting in insects. American Zoologist 21:631-640.

. 1994. Insect hormones. Princeton University Press, Princeton, N.J.

Nijhout, H. F., and D. E. Wheeler. 1982. Juvenile hormone and the physiological basis of insect
polymorphisms. Quarterly Review of Biology 57:109-133.

Oster, G. F., and E. O. Wilson. 1978. Caste and ecology in the social insects. Princeton University
Press, Princeton, N.J.

Reeve, E. C. R., and J. S. Huxley. 1972. Some problems in the allometric study of growth. Pages
267-302 in J. S. Huxley, ed. Problems of relative growth. Dover, New York.

Rensch, B. 1960. Evolution above the species level. Columbia University Press, New York.

Ricklefs, R. E. 1979. Ecology. Chiron, New York.

Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press,
Cambridge.

Sokal, R. R., and F. J. Rohlf. 1981. Biometry. Freeman, New York.

Thompson, D. W. 1942. On growth and form. Cambridge University Press, Cambridge.

Wheeler, D. E. 1990. Developmental basis of polymorphism in fire ants. Journal of Insect Physiology

36:315-322.
. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist
138:1218-1238.

Wheeler, D. E., and H. F. Nijhout. 1983. Soldier determination in Pheidole bicarinata: effect of
methoprene on caste and size within castes. Journal of Insect Physiology 29:847-854.

Wigglesworth, V. B. 1965. The principles of insect physiology. Methuen, London.

Wilbur, H. M., and J. P. Collins. 1973. Ecological aspects of amphibian metamorphosis. Science
(Washington, D.C.) 182:1305-1314.

Williams, C. M. 1980. Growth in insects. Pages 369-383 in M. Locke and D. S. Smith, eds. Insect
biology in the future. Academic Press, New York.

Wilson, E. O. 1953. The origin and evolution of polymorphism in ants. Quarterly Review of Biology
28:136-156.

Associate Editor: Jon Seger





