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Stochastic Gene Expression:
Dominance, Thresholds and Boundaries

H. Frederik Nijhout

Abstract

Butterfly color patterns are built as finely tiles mosaics of colored scales, each the product
of a single epidermal cell. The overall pattern is composed of a small number of pig-
ments. Each scale appears to make an all-or-none “choice” to synthesize only one of

this small set of alternative pigments. Gradual transitions from one color to another on the
wing are accomplished by graded changes in the proportions of discretely colored scales, and
areas of intermediate coloration are made up of a random salt-and-pepper mosaic of discretely
colored scales. In transition regions, and at boundaries between colors, scales also exhibit sto-
chastic patterns of pigment expression. A model for a stochastic mechanism for gene expres-
sion is presented that can account for the observed stochastic patterns of pigmentation. This
model shows that stochastic gene expression provides a simple mechanism for establishing a
step-like, or threshold, response to a spatially graded signal. Conditions that affect the steep-
ness of the threshold are examined. It is shown that stochastic gene expression also results in the
emergence of interesting patterns of dominance among the alleles of a gene.

Introduction
Stochastic gene expression occurs when transcriptional regulators are present at very low

concentrations, so that binding and release of regulators from their binding sites becomes proba-
bilistic. The suspicion that stochastic gene expression has a significant effect on the biology of
organisms comes from the observation that genetically identical (clonal) organisms, maintained
in identical environments, diverge phenotypically. For instance, cells division in bacteria grow-
ing in an optimum medium rapidly becomes asynchronous, presumably due to individual
stochastic variation in regulatory processes.1 Stochastic gene expression has been observed in
artificial genetic constructs.2 In addition, stochastic gene expression and has been suggested to
be a significant cause of haploinsufficiency.3

We have found that stochastic gene expression is a common and easily observable feature
in the development of butterfly color patterns. Color patterns are made up of pigmented scales;
each scale is the outgrowth of a single epidermal cell, and typically contains only a single
pigment. The overall color pattern is a pixellated mosaic of monochrome scales, and in most
patterns each scale-cell makes an all-or-none decision to synthesize one of a small set of alterna-
tive pigments.

Stochastic genes expression occurs in four different ways in this mosaic. First, where alter-
native colors are controlled by allelic differences at a single gene and there is incomplete domi-
nance, the color of the heterozygote is intermediate between that of the two homozygotes, and
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this is due, not to an intermediate amount of pigment, but due to the fact that a fraction of the
scales develop one color and the remainder develop the other color (Fig. 1). Second, many
natural color patterns are entirely made up of a random, salt-and-pepper arrangement of scales
of two or three colors, often with gradations in color that are accomplished by spatial changes
in the relative frequency of each of the colors (Fig. 2). Thirdly, stochastic gene expression
occurs at the boundaries between two areas of solid color. Even the sharpest boundaries are
noisy, with many scales expressing a color that is out of place. In many cases the boundaries are
rather wide and exhibit a gradient in the frequency of the two adjoining colors (Fig. 3).

Finally, each pigment in the eyespot patterns of butterflies is preceded by the expression
of a unique combination of transcription factors.4 In large areas of homogeneous color, the
relevant transcription factors become expressed in all cells, but the initiation of expression is
stochastic. Expression begins in a sparse random pattern of cells that gradually fills in until
all cells in the field that will become that particular color express these genes.4 Thus the
initial spatial pattern of gene activation in large areas of homogeneous gene expression is also
stochastic.

The present paper is an exploration of the potential causes behind these various mani-
festations of stochastic gene expression. We take as our starting point a mathematical ap-
proach to understanding stochastic gene expression and use this to examine the conditions
under which the observed patterns of stochastic expression in butterfly wings could occur.
We will see that dominance is an emergent property of stochastic gene expression, due to the
extreme nonlinearity of the relationship between transactivator concentration and the prob-
ability of gene expression.

A General Model of Stochastic Gene Expression
Stochastic gene expression is thought to be the consequence of the random activation and

inactivation of transcription due to successive cycles of binding and release of a transcription
factor.5 Activation and inactivation are assumed to occur by a first-order reversible reaction
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where G represent the gene and where the reaction constants kact and kinact determine the rates
of the activation and inactivation reactions, respectively.3,5,6 Because a gene can be either active
or inactive, the rate constants also define the probability that a gene will be activated if inactive,
and vice versa.

Figure 1. A cross of two genotypes of Papilio dardanus with codominant alleles. In many regions of the wing
the heterozygote on the right has a pigmentation (gray) roughly intermediate between that of the parental
types (black and white). The intermediate pigmentation comes about by a random arrangement of scales
of the two parental types (female patterns are shown in this diagram).
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Figure 3. Stochastic pigment expression is a common feature of butterfly color patterns. Top row shows
individual variation of stochastic patterning in Lethe europa. Other panels illustrate various manifestations
of stochastic pigment expression that is part of the normal color pattern of many species of butterflies.

Figure 2. Closeup of the color pattern on the ventral hind wing of Morpho hecuba, illustrating stochastic
pigmentation at boundaries between pattern and in certain regions of the color pattern.
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If the probability of gene activation is uniform overt time, then the time between activa-
tion events will have an exponential distribution given by the probability density function

f(t) = e-t/b/b, (1)

and the probability that an event has occurred is given by cumulative density function

F(t)= 1- e-t/b, (2)

where b is the mean time between events. Among the properties of an exponential distribu-
tion is that the standard deviation is the same as the mean, and the median time between
events is the half-time of the reaction: t1/2 = ln2*b = 0.693*b. If gene activation occurs as a
first-order reaction
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act    
act act act inact (3)

then kact = 1/b. The rate constant for the activation reaction thus defines the half-time of gene
activation. For example, if kact = 10-4 sec-1, then t1/2 = 6930 seconds: about 2 hours. The half
time of activation is the average time required for half of the genes in a sample to be come
activated, or, in the case of single cells, the average time required for one of the two alleles of a
gene to become activated. For all simulations reported here time is in arbitrary units (t), rate
constants (ks) are in units of t-1. The value of G can be either 0 (Ginact) or 1 (Gact), and the
probability of the 0 → 1 switch is kact = 1/b = k1. The effective value of the rate constant is
proportional to ploidy. Thus a diploid has two copies of the gene and thus is able to produce
twice as much product in a given period of time. So diploidy can be modeled by doubling the
value of kact (assuming both alleles respond identically to the activator) and the consequences
for the exponential distribution can be deduced from equation.1

A gene becomes inactivated by (1) the removal of a transcriptional activator, or by (2) the
binding of a transcriptional inhibitor. Like gene activation, these two kinds of inactivation
events can also be stochastic. The effects of the two types of inactivation events are presumably
independent of each other, so we assume that kinact is the sum of the stochastic rate of removal
of the transcriptional activator and the stochastic rate of binding of a transcriptional inhibitor
(kinact = kact-off + kinh-on). The fraction of time a gene is active is given by kact/(kact+kinact). This
ratio also gives the fraction of cells in which a gene is active at any given time.

We follow ref. 3 in assuming that the activated gene produces a gene product (P) via a
first-order mechanism, and that this product decays at a rate proportional to its concentration:

dP/dt = k3*Gact – k4*P. (4)

In diploid individuals two genes (G1 and G2) contribute independently to the synthesis of
product, so the rate becomes

dP/dt = k3*(G1act + G2act) – k4*P. (5)

The concentration of the product P fluctuates with stochastic variation in Gact (Fig. 4A). The
amplitude of the fluctuation in [P] is determined by the half-times of activation and inactiva-
tion of the gene and the rates of synthesis and destruction of P. If the half-time of activation/
inactivation is long (implying small kact and kinact) and the rates of P synthesis and decay are
large, the fluctuations will be large. If the half-times of inactivation and inactivation are short
(implying large kact and kinact) the fluctuation of P will have a smaller amplitude (Fig. 4B).

Nearly steady concentrations of P can be achieved either with very rapid alternation be-
tween activation and inactivation, or with extremely slow alternation (so that genes are either on
or off most of the time). The mean concentration is determined by all 4 parameters as follows:

[P]mean = (G1act+G2act)*kact*k3/(kinact*k4+kact*k4), (6)
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Figure 4. The rate constants of gene activation and inactivation affect the amplitude of the fluctuations in
the concentration of gene product. Top panel, activation and inhibition rate constants 0.05/t; bottom panel,
activation and inhibition rate constants 0.075/t. X axis is in units of t (time), y axis is concentration of
product, P.

where G1act+G2act = 2, and kact and kinact are the probabilities that a gene will be activated or
inactivated, respectively, in a given time interval. If the values both kact and kinact decrease
proportionally, or if the values of both k3 and k4 increase proportionally, the mean [P] is un-
changed but the system spends an increasing fraction of time at [P]min, or [P]max, or 1/2[P]max

(Fig. 5A). The transition between high, medium, and low [P] is random and the probability
that the system will be in one of these three states is distributed as shown in Figure 5B.

A

B

Figure 5. Very low rates of gene activation and inactivation result in product concentrations that dwell at
zero, medium and high levels. A, top panel shows bars illustrating the on/off times of two alleles of a diploid
above the resulting profile of gene product concentration. B, frequency distribution of gene product
concentrations at a standard time point.
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Stabilizing Gene Expression
We are concerned with two patterns of stochastic gene expression. The first one is in the

stochastic initiation of gene expression in a field where gene expression will eventually become
homogeneous in all cells. The second is stochastic gene activation that leads to a salt-and-pepper
pattern of two alternative stable states of gene expression in different cells (Fig. 2). In both cases
it is necessary to turn a randomly fluctuating level of P into a stable state of gene expression that
is spatially either homogeneous or heterogeneous. In the case of color patterns, the level of P
must unambiguously specify one or another pigment synthesis pathway, so there must be a
time point in development when the state of a gene becomes fixed.

One way of stabilizing initially stochastic expression is if the state of gene activation is
“read” at a specific point in time, so that the state at that time (active or inactive) becomes
fixed. A simple and possibly common way to do this is if [P] activates a process that makes
further fluctuation in [P] irrelevant. P could, for instance, be a transcription factor that acti-
vates another gene with a more stable activation kinetics. Such a mechanism would require that
the response to P behave as a threshold, so that P has no effect below the threshold concentra-
tion, and a full activating effect above the threshold. The value of the threshold would then
determine the fraction of cells that express the phenotype specified by high levels of P. For
instance, if the threshold is below the range of fluctuation of [P], all cells will express the
phenotype, and if the threshold is above the range of fluctuation of [P], none will. A threshold
within the range of variation in [P] will results in a random expression of alternative pheno-
types in different cells. In this scenario, the mechanism that controls the threshold effectively
controls the degree of stochasticity of the final pattern.

It is possible, however, to stabilize the expression level of P without the need to assume a
threshold mechanism. One way to stabilize the activation of a gene is to reduce kinact to zero (or
to a very small value relative to kact) after a period of time. This could be achieved if the product
P acts as an inhibitor of the inactivation reaction:

dGact/dt = kact* Ginact – kinact*Gact/P, (7)

so that as [P] rises, inactivation becomes progressively less probable. The mean [P] will ap-
proach [P]max, but [P] will continue to fluctuate with a low amplitude (Fig. 6).

Increasing the activation reaction relative to the inactivation reaction by means of a posi-
tive feedback from P

dGact/dt = P* kact* Ginact – kinact*Gact, (8)

Figure 6. When the stochastic inactivation rate of a gene is much smaller than its stochastic activation rate,
the gene product is stabilized and fluctuates with small amplitude at a high level. Here stabilization is
achieved through inhibition of gene inactivation by the gene product.
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has a similar same effect (Fig. 7). Regulation of gene expression by the gene product (autoca-
talysis) is a common feature of the regulation of genetic regulatory mechanisms. This kind of
feedback has one additional feature, in that it makes it possible to permanently inactivate
expression of the gene.3,7 Because gene activity is stochastic, the concentration of the gene
product will fluctuate. If the feedback is not too strong then the concentration of the prod-
uct can drop to zero, and this will effectively inactivate the gene because it brings the activa-
tion rate to zero (Equation 8 and Fig. 8). Of course, if the gene is initially inactive, this
mechanism prevents it from being activated. Therefore a different stimulus that is not part of
the feedback mechanism of P is required to activate gene expression. By itself, this mecha-
nism only stabilizes the inactive state, not the active state, and [P] continues to fluctuate as
long as the gene is not inactivated. The time required to become inactivated will have an
exponential distribution.

The active state can be stabilized by feedback of P on the inactivation reaction, as sug-
gested above, so a pseudo-bistable system (with [P] either zero or fluctuating at a high level) is

Figure 8. If positive feedback of gene product to gene activation rate is not strong fluctuations are large and
can result in permanent inactivation of the gene.

Figure 7. Stabilization of gene product level by positive feedback of gene product to gene activation rate.
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obtained by double feedback by P on both the activation and inactivation reactions giving (by
combining equations 5, 7 and 8):

dG1act/dt = P* kact* G1inact – kinact*G1act/P

dG2act/dt = P* kact* G2inact – kinact*G2act/P (9)

dP/dt = k3*(G1act + G2act) – k4*P

Figure 9 illustrates several sample traces of simulations with this set of equations for a diploid
system. If an individual is heterozygous for G, so that G1 is active and G2 is not, maximum
value of P is halved, and the probability that P will decline to zero in a given period of time
greatly increased. An example of the distribution of times required for [P] to drop to zero in the

Figure 9. Double feedback results in a pseudo-bistable system in which gene product concentrations
fluctuate with relatively low amplitude at a high level with occasional large excursions. When such a large
excursion reduces the product concentration to zero the gene is permanently inactivated. The panels show
four simulations with identical parameter values.
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diploid and haploid condition is shown in Figure 10. The means of these distributions, the
percentage of cells with inactivated genes at a given time, and the exact difference between
diploids and haploids, depends on the values of the parameters.

Thresholds and Boundaries
During pattern formation in development, medium- and long-distance regulatory signals

are often distributed in a smoothly graded fashion, and these graded signals eventually become
translated into abrupt localized differences in gene expression. Mechanisms by which a graded
signal can be translated into a discrete response have been extensively explored from a theoreti-
cal perspective. Most of the mechanisms studied so far establish thresholds or boundaries through
some combination of cooperativity, lateral inhibition, bifurcation, and/or diffusive instabil-
ity.8,9,10,11,12,13,14

Cook et al (1998; ref. 3) studied the properties of a stochastic mechanism of gene activa-
tion in which an activator stimulated gene transcription with Michaelis-Menten kinetics. They
assumed that the accumulation of the product above an arbitrary threshold level stimulated an
all-or-none activation of a “phenotype.” They showed that this system exhibited a threshold-like
response to graded input of the activator, with Hill coefficients ranging from 2.4 to 7.0. They
showed that the steepness of the switch depended on the stability of gene activation: faster
cycles of gene activation and inactivation produced sharper thresholds than relatively slower
rates of gene activation and inactivation. These investigators were primarily interested in exam-
ining how the predictability of gene activation affected the response to a graded signal, and
suggested that rapid cycling improved the response because it allowed a cell to sample stimulus
intensity repeatedly before committing to a particular genetic response.

Here we are interested in the temporal and spatial distribution of the stochastic response.
Instead of assuming an arbitrary threshold for the phenotype, we modeled a mechanism that
stochastically inactivates the gene permanently or keeps it active with high probability. At a
given time in development, the gene product is present or absent with a given probability that
depends on the level of transcriptional activators and on the rates of product synthesis and
decay.

Spatial variation in parameter values will lead to spatial variation in the probability that
the genes in a given cell will be activated or inactivated. Many transcription factors that regu-
late animal development are distributed as gradients. Smooth gradients of transcription fac-
tors are generally translated into more or less discrete spatial differences in the expression of

Figure 10. Stochastic gene activation can result in haploinsufficiency. Frequency distribution of 1000
simulations of a haploid system with double feedback illustrating the times at which gene product drops to
zero (cf Fig. 9), using the following parameter values: kact = kinact = 0.1, k3 = k4 = 0.2. All genes are inactivated
before t = 2,500. In a 1000 simulations of a diploid system with same parameter values the gene product
always remained high until t = 10,000.
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regulated genes. In butterfly color patterns, transition between two colors is never abrupt but
resembles a sigmoid transition (e.g., Fig. 11).

In our model, the activity of a transcription factor corresponds to the value kact, the rate
constant for gene activation. A linear gradient of a transcription factor is simulated by a linear
increase in the value of kact. The effect of such a gradient on stochastic gene activation in the
absence of feedback regulation is shown in Figure 12A. The transition from zero to one hun-
dred percent gene activation is sigmoid, with a large Hill coefficient that depends on the choice
of parameter values. The response to a linear gradient, in the presence of feedback, is illustrated
in Figure 13A. The transition is again sigmoid, with an even larger Hill coefficient. A linear
gradient in the distribution of the activity of the enzyme that produces P also yields a sigmoid
response in the distribution of gene product expression (Figs. 12B and 13B). The midpoint
and steepness of the transition are determined by the shape of the gradient (linear or nonlinear)
and the values of the parameters of the gene activation and expression mechanism (Fig. 14).

It is clear from these results that stochastic gene expression, with our without feedback
regulation, produces threshold-like responses to graded input signals (see also ref. 3). Stochas-
tic gene regulation is thus inherently a threshold mechanism. In butterfly wing patterns this is
revealed by stochastic gradations at boundaries between regions of different colors (Fig. 11).
Whether such stochastic transitions are a common feature of boundaries in other biological
systems is not known. Experiments in which gene expression is visualized by in situ hybridization

Figure 11. Boundaries between two color fields on the fore wing of Papilio glaucus, illustrating stochastic
transitions. Colored scales in P. glaucus, as in most other butterflies, occur in parallel rows. Graphs show the
frequency of light colored scales in each row in transects across two color boundaries. These transitions are
sigmoid with rather large Hill coefficients (Hill coefficient calculated by least squares nonlinear regression).



11Stochastic Gene Expression:

almost always reveal substantial stochastic expression at boundaries, so the involvement of
stochastic processes in the regulation of thresholds and boundaries may be widespread.

Spatially Homogeneous Stochasticity
Butterflies are evidently able to regulate the stochastic pattern of gene expression in their

color pattern with considerable accuracy. In sparse stochastic patterns, like those shown in
Figure 3, the density gradients of colored scales are consistent from individual to individual, so
these species are evidently able to control a precise proportionality of scales that are either on or
off over large regions of their wing. It seems unlikely that these are cases in which the system is
poised precisely on a steep transition with a high Hill coefficient, because such a situation
would be extremely sensitive to individual variation. It is more likely that these kinds of

A

B

Figure 12. Response of the stochastic gene activation system described by equations (3) and (5) to a linear
gradient of transcriptional activator activity (A), or a linear gradient in the activity of a product-synthesizing
enzyme (B). Filled circles, all other parameters at 0.01; open circles, all other parameters at 0.05. Ordinate
gives the parameter values for the activators or enzyme activity, abscissa gives the percentage of simulations
in which the genes were active at t = 10,000. Numbers next to each curve are the Hill coefficients (calculated
by nonlinear regression).
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individually invariant stable stochastic patterns exist in a region of geno-space where the Hill
coefficients are rather small, such as the region in the foreground of Figure 14.

Thus in butterfly color patterns we see the entire range of stochastic expression, from
alternative stability, to more or less sharp transition zones, to broadly distributed spatially ho-
mogeneous stochasticity. It is unlikely that each of these instances comes bout through a totally
different mechanism. Rather, it is more parsimonious to assume these are all variants of a
common mechanism and that natural selection can produce genotypes that occur almost any-
where in the geno-space shown in Figure 14. An interesting possibility raised by this observa-
tion on butterflies is that tissues that are homogeneous for one gene activity may be spatially
stochastic for another. Whether apparently homogeneous tissues are in fact mosaics of stochas-
tic gene expression is an open question.

A

B

Figure 13. Response of the stochastic gene activation system with double feedback regulation described by
equations9 to a linear gradient of transcriptional activator activity (A), or a linear gradient in the activity of
a product-synthesizing enzyme (B). Filled circles, all other parameters at 0.01; open circles, all other
parameters at 0.05. Ordinate gives the parameter values for the activators or enzyme activity, abscissa gives
the percentage of simulations in which the genes were active at t = 10,000. Numbers next to each curve are
the Hill coefficients.
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Figure 14. Bivariate plots of the effect of variation in transcription factor activity and product synthesis
activity on the level of P. Abscissa shows percentage of cells in which the genes were active at t = 10,000. In
the upper flat regions [P]=[P]max. In the upper figure all other parameters were set at 0.050, and in the lower
figure at 0.075. From these figure it can be seen that the transition are always sigmoid, and that for some
combinations of parameter values the transitions are sharp and switch-like, whereas for other combinations
the transitions are more gradual (see also Figs. 12 and 13). Parameter values also determine the midpoint
of the sigmoid transition, and hence the value of the threshold.
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Dominance
Dominance is an emergent property of the mechanism by which a gene affects the value

of a trait. In stochastic gene expression there is a sigmoidal relationship between genetic value
and phenotypic value (Figs. 13 and 14). This nonlinearity leads to an interesting pattern of
dominance among alleles. As shown in Figure 15, alleles that are on either extreme of a sigmoid
distribution will be dominant over alleles that are on the transition. Alleles that are on the
lower and upper flat regions of the distribution will be codominant only if they are perfectly
symmetrical relative to the transition. If they are not, then the allele most distant from the
transition will be dominant over the one closer to the transition, and this is independent of
whether the allele is hypermorphic or hypomorphic.

Figure 15. A sigmoid relationship
between genotype and phenotype
has interesting consequences for
the dominance relationships
among alleles with different ge-
netic values. In all three panels,
open circles indicate the values of
two homozygous genotypes. The
alleles are assumed to act additively
at the physiological level, so the
genetic value of the heterozygote
(AB) is exactly halfway between
that of the two homozygotes (AA
and BB). The phenotypic values
of the three genotypes are show
with horizontal dotted lines, and
the phenotypic vale of the het-
erozygote is indicated by H on the
ordinate. Dominance occurs is the
phenotypic value of the heterozy-
gote is not halfway between the
phenotypic values of the homozy-
gotes. Because of nonlinearity of
the relationship, both the absolute
and the relative values of the alle-
les affect their dominance relation-
ships. A hypermorphic allele (on
the high plateau) can be either
codominant (A), recessive (B), or
dominant (C) to a hypomorphic
allele.
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Haploinsufficiency in the presence of a null-allele occurs if the remaining ‘active’ allele has
a value that is less than twice the value of the transition midpoint. As can be seen in Figure 14,
the value of this midpoint depends on the other genes in the system, so haploinsufficiency is a
property of the entire genotype.

Evolution of dominance can occur either by mutational changes in the target gene or by
changes in the genetic background.15 Mutational changes can be represented by the generation
of new allelic values along the curve that describes the relationship between genotype and
phenotype (e.g., Fig. 15). Changes in the genetic background, by contrast, change the shape of
the genotype-phenotype curved, in effect changing the slope and inflection point of the sig-
moid (for instance the shapes of the curves parallel to the x-axis depend on their position along
the y axis in Fig. 14; here the gene represented by the y axis provides the genetic background for
the gene represented by the x axis, and vice versa).

Alleles that are located the high or low plateaus of Figure 15 are not under selection,
because their variation does not contribute to phenotypic variation. It is unlikely, therefore,
that selection on alleles of the focal gene will contribute significantly to the evolution of domi-
nance of that gene, particularly in regions where the transition between the low and high
plateaus is very sharp. It is thus more likely that evolution of dominance in systems that are
governed by stochastic gene expression occurs by evolution of the genetic background.
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